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Abstract: A distance transform, also known as distance map or distance field, is a representation of a
distance function to an object, as an image. Such maps are used in several applications, especially in
document image analysis. Some optimizations can be obtained by less generic methods: for example,
maps calculated by front propagation can determine shorter paths, assuming that the image is non-convex.
This presentation discusses different distance transform algorithms and underlines their advantages and
weaknesses. Finally we will explain our choices.

Résumé : Une carte de distances est une représentation sous forme d’image d’une fonction distance a
un objet. Ces cartes sont utilisées dans de nombreuses applications, en particulier en analyse d’images
de documents qui nous serviront d’illustration. Certaines methodes de calcul de cartes moins generiques
que d’autres peuvent s’averer plus rapides : par exemple, des cartes calculées par propagation de fronts
permettent de determiner des plus courts chemins mais ne fonctionnent que lorsque le support est connu
pour etre non-convexe. Cette présentation fait un tour d’horizon des différents algorithmes de calculs de
cartes de distance, met en évidence leurs atouts et faiblesses et explique les choix retenus.
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Introduction

A propos

This paper is divided in three main parts. It will begin by a little reminder of some vocabulary
about image processing and a quick explaination of the utility of the distance transformation
algorithms. In a second part, we will see how a distance map can be computed with different
approaches: the naive one, and two more sophisticated algorithms. In the last part, we will
present our enhancements and use of these algorithms.
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Chapter 1

Preliminaries

1.1 Vocabulary

1.1.1 Convex set

In Euclidean space, an object is convex if for every pair of points within the object, every point
on the straight line segment that joins them is also within the object.

Figure 1.1: A convex set. Figure 1.2: A non-convex set.
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1.1.2 Connected space

A connected space is a topological space which cannot be represented as the disjoint union of
two or more nonempty open subsets.

We often call a connected space an “object”.

Figure 1.3: Connected and disconnected subspaces of R”.

1.1.3 Euclidean distance

The Euclidean distance or Euclidean metric is the "ordinary" distance between two points that
one would measure with a ruler, which can be proven by repeated application of the Pythagorean
theorem.

For 2D points, P = (ps, py) and @ = (gz, ¢,), the Euclidean distance is computed as:

\/(px —qz)*+ (py — qy)?

In Euclidean n-space, it is defined as:
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1.1.4 Geodesic distance

In the mathematical field of graph theory, the distance between two vertices in a graph is the
number of edges in a shortest path connecting them. This is also known as the geodesic dis-
tance.

In a image using (for example) Manhattan distance, each point is assimilated as a node of a

graph, and each linkage between them and their neighbors is assimilated as an arc. By this way,
it is possible to determine a geodesic distance in a connected space of this image.

\

Figure 1.4: Euclidean distance. Figure 1.5: Geodesic distance.

1.1.5 Isotropy and anisotropy

Isotropy is uniformity in all directions. On the opposite, the anisotropy is the property of being
directionally dependent.



1.1 Vocabulary 8

1.1.6 Manhattan distance

The manhattan distance is a metric in which the distance between two points is the sum of the
(absolute) differences of their coordinates. It is also known as rectilinear distance, L; distance
or city block distance.

For example, in the plane, the manhattan distance between the point P, with coordinates
(x1,y1) and the point P, at (2, y2) is:

D]Wanhattan = |xl - x2| + ‘yl - y2|

Vi

Figure 1.6: The red, blue, and yellow lines have the same length (12)
using both Euclidean and Manhattan distance. Using Euclidean
geometry, the green line has length 6 x /2 ~ 8.48,
and is the unique shortest path.

»
b

Figure 1.7: Circles using discrete and continuous manhattan distance.
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1.1.7 Chessboard distance

The chessboard distance is a metric defined on a vector space where the distance between two
vectors is the greatest of their differences along any coordinate dimension.

In two dimensions, i.e. plane geometry, if the points P and ) have cartesian coordinates
(z1,y1) and (x2,y2), their chessboard distance is:

DChess = max(|1:2 - :l?1|7 |y2 - yll)

L S A N = T B ==)

Figure 1.8: The chessboard distance is the number of moves a king requires to move between spaces.

In n-dimensions, the chessboard distance between two vectors or points P and (), with stan-
dard coordinates p; and g;, respectively, is:

Dchess = maxi(|ps — qi])
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1.1.8 Distance map

A distance transform, also known as distance map or distance field, is a representation of a
distance function to an object, as an image. This means that the map supplies each pixel of the
image with the distance to the nearest obstacle pixel.

3123|121
3(2(1(2|1|0
2110121
2|11|10(1|12]|2
31211233
3123
Figure 1.9: Binary input image. Black is Figure 1.10: Output distance map using
background, white is object. Manhattan distance.

Figure 1.11: Distance map using stretched grayscale values for display.
The center of the image is the background.
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1.1.9 Closest point map

The closest point map associates for each background point the nearest object’s point.

alalalalc|c
alalalalc
ala alc|c
b|b bic|c
blb|b|b|b|c
blb|b|b|b|c

Figure 1.12: Closest point map. Here, we labelized each point in order to see associate points.
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1.1.10 Influence zone

The influence zone labelizes each background point of the map to the label of the closest object.

1.2 Utility of the distance map
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Distance map
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