
Complementing Büchi Automata Via Alternating
Automata

Guillaume Sadegh

Technical Report no0915, January 2010
revision 2165

Model checking is a field of formal verification that aims to automatically test the behavior of a system
with the help of temporal logic formulae. SPOT is a model checking library which relies on one technique:
the automata-theoretic approach. In this approach, both system and formula are expressed with Büchi
automata, which are automata on infinite words. SPOT provides several algorithms to deal with these
automata, with model checking as objective. An operation for automata was recently added in SPOT: the
complementation. Research of algorithms for this operation is still relevant today, since there is still no
algorithm reaching the theoretical optimal bound. SPOT aims to provide features to deal with automata
used in model-checking, then adding some new complementation algorithms in SPOT is interesting. We
will present two recent complementation algorithms implemented in SPOT.

Keywords
Büchi automata, complementation, ranks, weak alternating automata, generalized Büchi automata.

Laboratoire de Recherche et Développement de l’Epita
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 53 14 59 47 – Fax. +33 1 53 14 59 22
sadegh@lrde.epita.fr – http://www.lrde.epita.fr/

sadegh@lrde.epita.fr
http://www.lrde.epita.fr/

2

Copying this document

Copyright c© 2010 LRDE.
Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

Contents

Introduction 5

1 Automata on infinite words 7
1.1 Definitions . 7

1.1.1 ω-automata . 7
1.1.2 Mode of transition-function . 8
1.1.3 Acceptances conditions . 9

1.2 Operations on ω-automata . 11
1.2.1 Complementation . 12

2 Complementing Büchi automata 13
2.1 Ranks and complementation . 14
2.2 From universal co-Büchi to weak alternating automata 15
2.3 Complementing non-determinitic Büchi automata 17

2.3.1 Complementation via alternating automata 17
2.3.2 Complementation without alternating automata 17

2.4 Simplifications of alternating automata . 20
2.5 Complementing non-determinitic generalized Büchi automata 21

2.5.1 Ranks updated for generalized acceptance conditions 21
2.5.2 The complementation . 22

3 Implementation in SPOT 27
3.1 Complementation on Büchi acceptance conditions 27

3.1.1 Alternating Automata in SPOT . 27
3.1.2 The algorithm . 27

3.2 Complementation on Generalized Büchi acceptance conditions 27
3.3 Testing the implementation . 29
3.4 Benchmarks . 30

4 Conclusion and perspectives 31

Conclusion and perspectives 31
4.1 Conclusion . 31
4.2 Perspectives . 31

4.2.1 Implementing the translation from weak alternating automata to non-
deterministic Büchi automata . 31

4.2.2 Simulations in SPOT . 32
4.2.3 Merging everything . 32

CONTENTS 4

5 References 33

Introduction

Model checking is a field of formal verification that aims to automatically check the behavior of
a system with the help of logic formulae. The goal of this verification is to confirm whether a
system satisfies a set of properties.

SPOT (Duret-Lutz and Poitrenaud, 2004) is a model checking library that relies on one ap-
proach: the automata-theoretic approach. In this technique, both system and formula are ex-
pressed with ω-automata, which are automata on infinite words.

The automaton that represents the system to verify has for language L (AM), the set of all
possible executions of the system. Properties to verify are expressed with the negated formula
automaton, whose language, L (A¬ϕ) is the set of all executions that would invalidate the for-
mula. Thus, the intersection of these two automata will produce an automaton whose language
is the set of all possible executions of the system that would invalidate the formula. With this
last automaton, a procedure called emptiness check checks whether the recognized language is
empty. When this language is empty, the properties satisfy the system. However, if this lan-
guage accepts a non-empty word, then there exists a run in the system that invalidates the logic
formula.

SPOT provides a set of algorithms to work with a kind of ω-automata called Transition-based
Generalized Büchi Automaton (TGBA). Most of the common operations on ω-automata used in
model checking already exist in the library. The last operation added in SPOT was an algorithm
to complement TGBA, using Safra (1988)’s construction. It is presented in [Sadegh (2009)].

Complementing an automaton means constructing another automaton that would recog-
nized the complemented language of the initial one. This operation would be really useful
in model checking since formulae are negated to represent unexpected behaviors, however in
practice this operation is unrealistic. This is due to the lack of efficient algorithms, since even
best ones, like Safra’s construction have an exponential complexity. Therefore, model checking
avoids complementation by different ways, but sometimes there is no escape to this operation.

To complement an automaton, Safra’s algorithm transforms the original automaton into a
deterministic automaton. The high complexity of the algorithm is due to this operation, which
is more complicated than with finite automata. State-of-the-art complementation algorithms
avoid determinization and transform the original automaton into a weak alternating automaton,
which is a special kind of ω-automata. This method is expected to produce complemented
automata with a smaller size than with Safra’s construction, and then to be more efficient on the
whole process to do model checking.

We have implemented in SPOT a new algorithm complement Büchi automata with weak al-
ternating automata, and an extension of this algorithm to support Generalized Büchi acceptance
conditions.

Chapter 1 will give some background on ω-automata, with definitions and an overview of

CONTENTS 6

the operations that will interest us.
In Chapter 2 we will discuss how to complement a Transition-based Generalized Büchi au-

tomaton with weak alternating automata, by describing the algorithms we used. Chapter 3 will
present how these algorithms are implemented in SPOT. In Chapter 4 we will conclude and we
will present future works to accomplish on these complementation algorithms.

Chapter 1

Automata on infinite words

While classical finite automata recognize words of finite length, ω-automata recognize words
of infinite length but with a finite number of states. They use acceptance conditions instead of
final states.

1.1 Definitions

1.1.1 ω-automata

Figure 1.1 presents the graphical representation of ω-automata.

1 2

a

b

b

States

Transitions labeled by letters of the alphabet

Initial state
State that satisfies
the acceptance condition

Figure 1.1: An ω-automaton

Definition 1.1.1. An ω-automaton is a quintuple A = (Q,Σ, δ, q0, F) with:

• Q a finite set of states,

• Σ the alphabet

• δ : Q× Σ→ 2Q the transition function,

• q0 ∈ Q the initial state,

• F the acceptance condition, which is a formula on states. The difference with automata
on finite words lies in these acceptance conditions.

1.1 Definitions 8

Definition 1.1.2. A sequence of states π = π0, π1, π2, . . . ∈ Qω is called a run over an infinite
word σ ∈ Σω , if π0 = σ0 and for every i such as σi is the ith letter of σ, πi+1 ∈ δ(πi, σi).

An accepting run is a run that satisfies the acceptance condition.

Example. A run of the automaton in Figure 1.1 could be π = 1 , 1 , 2 , . . . with the state 2 meet
infinitely often.

Definition 1.1.3. The infinity set of a run π is the set of states that occurs infinitely many time in
π and is denoted inf(π).

Example. With the previous example, inf(π) = { 2 }, since the state 2 occurs infinitely often in
the run.

Definition 1.1.4. The language of A is the set of all the inputs with an accepting run of A, and
is denoted L (A)

Example. The language of the automaton in Figure 1.1, with an acceptance condition that
requires to visit infinitely often 2 , is a word with the letter a repeated finitely and followed by
an infinite number of b (a?bω).

Remark 1.1.5. The number of successors of a state q ∈ Q for the letter l ∈ Σ is denoted |δ(q, l)|.

The properties on ω-automata can be divided in three criteria used to denote the different
kinds of automata.

• Their mode of transition-function, that defines the semantic of a run of an automaton.

• Their type of acceptance condition, that defines whether a run of the automaton is accepting.

• Their labeling, on states for most model checkers and algorithms, or on transitions for a few
ones such as SPOT. However, we will focus in this report on state-labeled automata since
all the algorithms that will be presented are designed for this kind of labeling.

Mode of transition-function and acceptance conditions are detailed in the next sections.

1.1.2 Mode of transition-function

The mode of transition-function defines how a run of an automaton occurs. We usually distin-
guish: deterministic automata, non-deterministic automata, universal automata and alternating
automata.

Definition 1.1.6. An automaton is called deterministic when each transition function δ(q, l) has
exactly one successor. More formally, we can say: iff ∀l ∈ ΣA, ∀q ∈ QA, |δ(q, l)| 6 1, then A is
deterministic.
Example. Figure 1.2a represents a deterministic automaton since each state has exactly one
successor for each letter l.

Definition 1.1.7. An automaton where transition function δ(q, l) may have more than one suc-
cessor is called:

9 Automata on infinite words

• non-deterministic or existential, when the semantic is to choose non-deterministically one
state as successor when a transition function returns more than one successor.

Example. With the automaton in Figure 1.2b interpreted as a non-deterministic ω-automaton,
the word ba is recognized if it has for run 1 , 1 OR 1 , 2 .

• universal, when the semantic is to visit all the successors when a transition function returns
more than one successor.

Example. With the automaton in Figure 1.2b interpreted as a universal ω-automaton, the
word ba is recognized if it has for runs 1 , 1 AND 1 , 2 .

• alternating, when both non-deterministic and universal transitions can be used. To ex-
press these transition we use both a Boolean formula, denoted B+(Q), with the logical
quantifiers ∨ and ∧.

Example. Figure 1.2c represents an alternating automaton. In this automaton, successor
states of 1 are expressed with δ

(
1 ,a

)
=
(

1 ∧ 2
)
∨ 3 . This means that a run of the

word a will reach states (1 AND 2) OR 3 .

1 2

b

a

a

b

(a)

1 2

a, b

a

a

a, b

(b)

1 2

3

a

a

(c)

Figure 1.2: Deterministic (a), Non-deterministic and Universal (b), and Alternating (c) au-
tomata.

1.1.3 Acceptances conditions

The acceptance condition is a formula on states that defines the semantic of an accepting run.
Spot relies on Büchi acceptation conditions, however to complement an automaton via an alter-
nating automaton we also need to introduce co-Büchi acceptance conditions.

1.1 Definitions 10

Büchi acceptance condition

Büchi (1962) introduced a kind of ω-automata that now bears his name. The Büchi acceptance
condition is the most adapted to model checking since it supports all the operations presented
in Section 1.2: Operations on ω-automata.

With his definition, the acceptance condition F is a set of states, and a run must visit infinitely
often some states from F to be accepting.

More formally, a run π of a Büchi automaton with F ⊆ Q as acceptance condition is accepting,
iff inf(π) ∩ F 6= ∅.

Example. Figure 1.3 presents a Büchi automaton with its states in the acceptance condition F
marked with . A run of this automaton is accepting if it visits infinitely often states 2 OR 3 .

1 2

3

Figure 1.3: A (co-)Büchi automaton.

Generalized Büchi acceptance condition

Generalized Büchi automata are a variant of Büchi automata that is more succinct, since it allows
to have automata that recognize the same language than Büchi automata but with a smaller
number of states and transitions.

The Generalized Büchi acceptance condition has more than one set of acceptance conditions.
A run is accepting if it passes through at least one state of each set infinitely often. Figure 1.4
illustrates this acceptance condition.

More formally, the definition is ∀i inf(π) ∩ Fi 6= ∅with F = {F1, F2, · · · , Fn} and Fi ⊆ Q.

Example. Figure 1.4 presents a generalized Büchi automaton with an accepting run if a run
visits infinitely often both acceptance conditions (states denoted with and).

co-Büchi acceptance condition

Co-Büchi acceptance condition is the dual acceptance condition to Büchi acceptance condition.
The acceptance condition F is a set of states, and a run must visit finitely often all the states

from F to be accepting.
More formally, a run π of a co-Büchi automaton with F ⊆ Q as acceptance condition is ac-

cepting, iff inf(π) ∩ F = ∅.

Example. Figure 1.3 can represent a co-Büchi automaton with its states in the acceptance con-
dition F marked with . A run of this automaton is accepting if it visits finitely often states 2
AND 3 .

11 Automata on infinite words

1 2

3

Figure 1.4: A generalized (co-)Büchi automaton.

Generalized co-Büchi acceptance condition

In the same manner as Büchi acceptance conditions, co-Büchi acceptance condition can have
generalized conditions.

The Generalized co-Büchi acceptance condition has more than one set of acceptance condi-
tions. A run is accepting if it passes through all the state of at least one set finitely often.

More formally, the definition is ∃i inf(π) ∩ Fi = ∅with F = {F1, F2, · · · , Fn} and Fi ⊆ Q.

Example. Figure 1.4 represents a generalized co-Büchi automaton. A run is accepting if it visits
finitely often one of the two acceptance conditions (states denoted with and).

Weak alternating automata

Muller et al. (1986) introduced weak alternating automata (WAA). In a WAA, the acceptance set
is a set of states, and there exists a partition of Q (all the states of the automaton) into disjoint
sets, Qi, such that for each set Qi, eitherQi ⊆ F , in that case Qi is an accepting set, or Qi∩F = ∅,
in that caseQi is a rejecting set. There also exists a partial order between sets, such that for every
q ∈ Qi and q′ ∈ Qj , for which q′ ∈ δ(q, l) for some l ∈ Σ, we have Qj < Qi.

Weak alternating automata can be viewed as an automata with both a Büchi acceptance con-
dition F and a co-Büchi acceptance condition Q \ F (Kupferman and Vardi, 1997).

1.2 Operations on ω-automata

Some operation on ω-automata are common, such as

• The product or intersection of two ω-automata A1 and A2, that produces an automaton
that recognizes L (A1) ∩ L (A2). The operation is useful in model checking to produce
an automaton from the system automaton and the formula automaton that will recognize
runs of the system that invalidate the formula.

For two automata with n1 and n2 states, the product automaton will have O(n1 × n2)
states.

• The sum, or union of two ω-automata A1 and A2, that produces an automaton that rec-
ognizes L (A1) ∪L (A2). This operation is quite easy to implement for non-deterministic
automata since it only requires to add an initial state to join initial states of A1 and A2.

For two automata with n1 and n2 states, the sum automaton will have O(n1 + n2) states.

1.2 Operations on ω-automata 12

• The emptiness check, that is common for Büchi automata and checks whether an ω-automaton
recognizes a non-empty word.

1.2.1 Complementation

A state-of-the-art on the complementation of Büchi automata can be found in Vardi (2007).
The complementation for deterministic ω-automata is an easy operation since it only requires

to switch to the dual acceptance condition (Büchi/co-Büchi), but for non-deterministic ones this
operation is more complicated.

Büchi (1962) introduced a complementation construction that transforms a Büchi automa-
ton with n states into a Büchi automaton with 22O(n)

states. Sistla et al. (1985) suggested an
improved version of this construction with 2O(n2) states. Finally, Safra (1988) proposed a con-
struction by determinizing the automaton that produces an Büchi automaton with 2O(n log n)

states. From the theoretical point of view, this construction matches the lower bound described
by Michel (1988) and is therefore optimal.

However, constants that are hidden by the O() notation can be improved since Safra’s upper
bound is n2n while Michel’s is n!. Kupferman and Vardi (1997) used complementation based
on alternating automata and universal co-Büchi automata. Universal co-Büchi automata are
dual on the acceptance condition and the transition mode to non-deterministic Büchi automata.
An universal co-Büchi automata with n states can be translated into an alternating automata
with n2 states. The exponential blow-up in this complementation is due to the transformation
from alternating automata into Büchi automata, which has an 2O(n) complexity. However, they
decrease the upper bound up to (6n)n. Kupferman and Vardi (2005) have presented some tech-
niques to enhance this approach by the reduction the size of the alternating automata before its
transformation into a Büchi automata. Theirs techniques rely on simulation on the automata.
(Gurumurthy et al., 2003) has presented some techniques to support Generalized Büchi accep-
tances conditions with this construction.

Chapter 2

Complementing Büchi automata

In this section, we will present algorithms that we use to complement Büchi automata. We can
resume the use of the different algorithms that we will present in Figure 2.1.

Nondeterministic
Büchi Automata

Universal co-
Büchi Automata

Weak Alternat-
ing Automata

Nondeterministic
Büchi Automata

Universal General-
ized co-Büchi

Automata

Nondeterministic
Generalized

Büchi Automata

Changing

interpretation (Obvious)

Changing

interpretation (Obvious)

Transform
ation

K
upferm

an
and

V
ardi

(1997)Direct tra
nsfo

rm
atio

n

Kupferm
an and Vardi (1997)

Transform
ation

K
upferm

an
and

V
ardi

(2005)

Direct transformation

Kupferman and Vardi (2005)

Transformation

Miyano and
Hayashi (1984)

Sim
plification

G
urum

urthy
et

al.(2003)

A

¬A

A

Figure 2.1: Steps of the complementation.

2.1 Ranks and complementation 14

2.1 Ranks and complementation

The complementation introduced by Kupferman and Vardi (1997) relies on ranks, that we will
present in this section.

Let A = (Σ, Q, qin, δ, F) an universal co-Büchi automaton and n = |Q|. The run of A on an
infinite word can be represented by a directed acyclic graph (DAG) Gr = (V,E), with

• V ⊆ Q× N.

• E ⊆
⋃
l≥0

(Q×{l})× (Q×{l+ 1}) is such that E(〈q, l〉, (q′, l+ 1)) iff there exists a transition

that reaches q′ from q. Formally the condition is q′ ∈ δ(q, σe) with σe ∈ Σ.

Figure 2.2 represents a co-Büchi automaton and Figure 2.3 its DAG.

1 2
a a

Figure 2.2: A co-Büchi automaton.

1, 0 2, 1 2, 2 2, 3
a a a a

F -free verticesF -vertex

Figure 2.3: DAG of co-Büchi automaton.

Definition 2.1.1. A vertex 〈q, l〉 is a F -vertex iff q ∈ F . It is easy to see that a run π is accepting
iff all paths in Gr have only finitely many F -vertices. Indeed, by definition in 1.1.3 a run in a
co-Büchi automaton is accepting if inf(π) ∩ F = ∅

The DAG in Figure 2.3 has only one F -vertex: (1, 0)

Definition 2.1.2. Consider a sub-DAG G ⊆ Gr. We say that a vertex (q, l) is F -free in G iff all
the vertices in G that are reachable from 〈q, l〉 are not F -vertices.

All the vertices from the DAG in Figure 2.3 with q = 2 are F -free. This is obvious since from
the state 2, we cannot reach the state 1 that holds the acceptance condition.

Definition 2.1.3. Consider a sub-DAG G ⊆ Gr. We say that a vertex 〈q, l〉 is finite in G iff only
finitely many vertices in G are reachable from 〈q, l〉.

The DAG in Figure 2.3 has no finite vertices. However, if we remove all the F -free vertices of
this graph, the vertex (1.0) would be finite.

Given an accepting run π, we define an infinite sequence G0 ⊇ G1 ⊇ G2 ⊇ . . . of DAGs define
as follow:

• G0 = Gr

• G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite in G2i}

15 Complementing Büchi automata

• G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is F -free in G2i+1}
The interesting property with DAG is that if π is accepting, then G2n will always be empty,

with n the number of states in the initial automaton. In an accepting run, infinite path are F -
free, and the accepting condition is on finite states. There is at most n finite states, then each
deletion has to be called at most n times to produce an empty set.

Definition 2.1.4. Each vertex 〈q, l〉 has an unique index i ≥ 1 such that 〈q, l〉 is either finite in
G2i or F -free in G2i+1. Given a vertex 〈q, l〉, we define the rank of 〈q, l〉 denoted rank(〈q, l〉), as
follows:

rank(〈q, l〉) =

{
2i If 〈q, l〉 is finite in G2i

2i+ 1 If 〈q, l〉 is F -free in G2i+1

For k ∈ N, let [k] denote set {0, 1, . . . , k}, and let [k]odd denote the set of odd members of [k].
The rank of every vertex in Gr is in [2n].

If a state has an odd rank, then it was deleted because it was considered as F -free. If the state
was F -free, there was not condition to visit finitely often this state, so a run can visit infinitely
often this state.

Example

We can construct DAGs of the co-Büchi automaton in Figure 2.2 to compute the rank of each
vertex. This construction is presented in Figure 2.4.

2.2 From universal co-Büchi to weak alternating automata

The transformation from Büchi or co-Büchi to weak alternating automata is a quadratic con-
struction that relies on the ranks introduced in the previous section.

Let A = (Σ, Q, qin, δ, F) be an alternating co-Büchi automaton and n = |Q|. There exists
a weak alternating Büchi automaton A′ = (Σ, Q′, q′in, δ

′, F ′) such that L (A) = L (A′). This
automaton is constructed as follows:

• Q′ = Q × [2n]. A state 〈q, l〉 ∈ Q′ indicates that the current level of the DAG contains the
state q and the guessed level ranking for the current level is l.

• q′in = 〈qin, 2n〉, with 2n the upper bound of the rank of 〈qin, 0〉.
• We define δ′ by means a function release : B+(Q) × [k] → B+(Q′). Given a formula
θ ∈ B+(Q) and a rank i ∈ [k], the formula release(θ, i) is obtained from θ by replacing an
atom q by the disjunction

∨
i′≤i

(q, i′). For example, release(q1 ∧ q2, 2) = (〈q1, 2〉 ∨ 〈q1, 1〉 ∨

〈q1, 0〉)∧ (〈q2, 2〉∨〈q2, 1〉∨〈q2, 0〉). We define δ′ for a state 〈q, i〉 ∈ Q′ and σe ∈ Σ as follows:

δ′(〈q, i〉, σe) =

{
release(δ(q, σe), i) If q /∈ F or i is even
false If q ∈ F and i is odd

That is, if the current guessed rank is i then, by employing release, the run can move to its
successors at any rank that is smaller than i. However, if q ∈ F and the current guessed
rank is odd, then by the definition of ranks the current guessed rank is wrong, and the run
is rejecting.

2.2 From universal co-Büchi to weak alternating automata 16

1, 0 2, 1 2, 2 2, 3
a a a a

(a) G0 = Gr

1, 0 2, 1 2, 2 2, 3
a a a a

(b) G1 = G0 \ {〈q, l〉 | 〈q, l〉 is finite in G0}

1, 0 Vertices were F -free

(c) G2 = G1 \ {〈q, l〉 | 〈q, l〉 is F -free in G1}

Vertex was
finite

(d) G3 = G2 \ {〈q, l〉 | 〈q, l〉 is finite in G2}

No vertices left in the graph

(e) G4 = ∅. So the run-DAG was accepting.

1, 0 2, 1 2, 2 2, 3

rank: 1rank: 1rank: 1rank: 2

a a a a

(f) Define the rank of each vertex.

Figure 2.4: DAG and ranks of co-Büchi automaton.

17 Complementing Büchi automata

q0 q1
a

¬a >

Figure 2.5: An automaton to complement

• F ′ = Q× [k]odd, since infinitely many guessed ranks along a path should be odd.

This algorithm is illustrated in Figure 2.6 that shows the algorithm on the automaton illus-
trated in Figure 2.5. Since this automaton has only one letter in its alphabet (a), the resulting
automaton doesn’t have alternation.

Once the translation from Universal Co-Büchi Automata to Weak Alternating Automata is
done, complementation is reduced to remove the alternation from the Alternating Büchi Au-
tomata, since Weak Alternating is a special case of Büchi Alternating.

2.3 Complementing non-determinitic Büchi automata

From the transformation into weak alternating automata that we have presented, its easy to
complement a Büchi automata. Figure 2.7 presents current steps of the complementation.

2.3.1 Complementation via alternating automata

From the illustration 2.7 we can notice that we need an algorithm to convert weak alternating
automata into Büchi automata to have a complementation working. Miyano and Hayashi (1984)
have introduced an algorithm to do this transformation.

This transformation is defined as follow:
Let A = (Σ, Q, qin, δ, F) be an alternating Büchi automaton. There is a non-deterministic

Büchi automaton A′ = (Σ, 2Q × 2Q, 〈{qin}, ∅〉, δ′, 2Q × {∅}), such that L (A) = L (A′), where δ′

is defined, for all 〈S,O〉 ∈ 2Q × 2Q and σe ∈ Σ, with:

• if O 6= ∅, then
δ′(〈S,O〉, σe) = {〈S′, O′ \F 〉 | S′ satisfies

∧
q∈S

δ(q, σe), O′ ⊆ S′ andO′ satisfies
∧
q∈O

δ(q, σe)}.

• if O = ∅, then
δ′(〈S,O〉, σe) = {〈S′, S′ \ F 〉 | S′ satisfies

∧
q∈S

δ(q, σe).}

2.3.2 Complementation without alternating automata

We can avoid the construction of the weak alternating automata with a composition of the three
constructions. This approach is presented by Kupferman and Vardi (1997).

Given a non-determinitic Büchi automatonA = (Σ, Q, qin, δ, F), we define a non-deterministic
Büchi automaton A′ such that L (A′) = Σω \ L (A). Before we give the construction method
for A′, we need to introduce some notations. A level ranking for A is a function g : Q → N such
that g(q) is odd if q /∈ F . Let R be the set of all level rankings. For two level rankings g and g′

in R, a set S ⊆ Q, and a letter σe ∈ Σ, we say g′covers〈g, S, σe〉 if for all q ∈ S and q′ ∈ Q, if

2.3 Complementing non-determinitic Büchi automata 18

q0, r:4

(a) The initial state,
with a rank of 4
(the initial automa-
ton has 2 states)

q0, r:4q0, r:4 q0, r:3

q0, r:2

q0, r:1

q0, r:0

q1, r:4

q1, r:3

q1, r:2

q1, r:1

q1, r:0

¬a

¬a

¬a

¬a

¬a

a

a

a

a

a

(b) The state takes as successor all its successors
in the original automaton with all the ranks ≤ 4.
All states with an odd rank are accepting.

q0, r:4 q0, r:3q0, r:3

q0, r:2

q0, r:1

q0, r:0

q1, r:4

q1, r:3

q1, r:2

q1, r:1

q1, r:0

¬a

¬a

¬a

¬a

¬a

a

a

a

a

a

¬a

¬a

¬a

¬a

a

a

a

a

(c) The state takes as successor all its successors
in the original automaton with all the ranks ≤ 3

q0, r:4 q0, r:3

q0, r:2q0, r:2

q0, r:1

q0, r:0

q1, r:4

q1, r:3

q1, r:2

q1, r:1

q1, r:0

¬a

¬a

¬a

¬a

¬a

a

a

a

a

a

¬a

¬a

¬a

¬a

a

a

a

a

¬a
¬a

¬a

a

a

a

(d) The state takes as successor all its successors
in the original automaton with all the ranks ≤ 2

q0, r:4 q0, r:3

q0, r:2

q0, r:1q0, r:1

q0, r:0

q1, r:4

q1, r:3

q1, r:2

q1, r:1

q1, r:0

¬a

¬a

¬a

¬a

¬a

a

a

a

a

a

¬a

¬a

¬a

¬a

a

a

a

a

¬a
¬a

¬a

a

a

a

¬a
¬a

a

a

(e) The state takes as successor all its successors
in the original automaton with all the ranks ≤ 1

q0, r:4 q0, r:3

q0, r:2

q0, r:1

q0, r:0q0, r:0

q1, r:4

q1, r:3

q1, r:2

q1, r:1

q1, r:0

¬a

¬a

¬a

¬a

¬a

a

a

a

a

a

¬a

¬a

¬a

¬a

a

a

a

a

¬a
¬a

¬a

a

a

a

¬a
¬a

a

a

¬a

a

(f) The state takes as successor all its successors in
the original automaton with all the ranks equal to
0

Figure 2.6: A weak alternating automaton produced from the automaton in Figure 2.5. Since
this automaton has only one letter in its alphabet, no conjunction of states appears.

19 Complementing Büchi automata

q0, r:4 q0, r:3

q0, r:2

q0, r:1

q0, r:0

q1, r:4q1, r:4

q1, r:3

q1, r:2

q1, r:1

q1, r:0

¬a

¬a

¬a

¬a

¬a

a

a

a

a

a

¬a

¬a

¬a

¬a

a

a

a

a

¬a
¬a

¬a

a

a

a

¬a
¬a

a

a

¬a

a

⊤

⊤

⊤

⊤

⊤

(g) The state takes as successor all its successors
in the original automaton with all the ranks ≤ 4

q0, r:4 q0, r:3

q0, r:2

q0, r:1

q0, r:0

q1, r:4

q1, r:3

q1, r:2q1, r:2

q1, r:1

q1, r:0

¬a

¬a

¬a

¬a

¬a

a

a

a

a

a

¬a

¬a

¬a

¬a

a

a

a

a

¬a
¬a

¬a

a

a

a

¬a
¬a

a

a

¬a

a

⊤

⊤

⊤

⊤

⊤

⊤

⊤
⊤

(h) The state takes as successor all its successors
in the original automaton with all the ranks ≤ 2

q0, r:4 q0, r:3

q0, r:2

q0, r:1

q0, r:0

q1, r:4

q1, r:3

q1, r:2

q1, r:1

q1, r:0q1, r:0

¬a

¬a

¬a

¬a

¬a

a

a

a

a

a

¬a

¬a

¬a

¬a

a

a

a

a

¬a
¬a

¬a

a

a

a

¬a
¬a

a

a

¬a

a

⊤

⊤

⊤

⊤

⊤

⊤

⊤
⊤

⊤

(i) The final loop make the automaton con-
structed.

Figure 2.6: A weak alternating automaton produced from the automaton in Figure 2.5. Since
this automaton has only one letter in its alphabet, no conjunction of states appears.

2.4 Simplifications of alternating automata 20

Nondeterministic
Büchi Automata

Universal co-
Büchi Automata

Weak Alternat-
ing Automata

Nondeterministic
Büchi Automata

Changing

interpretation (Obvious)
Transform

ation

K
upferm

an
and

V
ardi

(1997)Direct tra
nsfo

rm
atio

n

Kupferm
an and Vardi (1997)

Transformation

Miyano and
Hayashi (1984)

A

¬A

Figure 2.7: Steps of the complementation.

q′ ∈ δ(q, σe), then g′(q′) ≤ g(q). Finally, we define odd(g) that contains states to which g gives
an odd rank.

Now, we can construct A′ = (Σ, Q′, q′in, δ
′, F ′) where:

• Q′ = 2Q×2Q×R. A state 〈S,O, g〉 ∈ Q′ indicates that the current level of the DAG contains
the state S and the guessed level ranking for the current level is g. The set O ⊆ S contains
states along paths that have not visited a vertex with an odd rank since the last timeO has
been empty.

• q′in = 〈{qin, ∅, gin}〉, where gin(q) = 2n for all q ∈ Q.

• δ′ is defined, for all 〈S,O, g〉 ∈ Q and σe ∈ Σ, as follows.

– IfO 6= ∅, then δ′(〈S,O, g〉, σe) = {〈δ(S, σe), δ(O, σe)\odd(g′), g′〉 : g′ covers 〈g, S, σe〉}.
– If O = ∅, then δ′(〈S,O, g〉, σe) = {〈δ(S, σe), δ(S, σe)\odd(g′), g′〉 : g′ covers 〈g, S, σe〉}.

• F ′ = 2Q × {∅} ×R.

2.4 Simplifications of alternating automata

From a non-determinitic Büchi automaton with n states, we get an universal co-Büchi automa-
ton with n states, then a weak alternating automaton with O(n2) states, and finally a non-
deterministic Büchi automaton with 2O(n2). However, Michel (1988) and Safra (1988) have
shown that an optimal complementation for a non-deterministic Büchi automaton results in
an automaton with 2O(n log n) states.

Gurumurthy et al. (2003) present some simplification techniques on weak alternating au-
tomata to reduce the size of the automata from n2 to n log n. The most interesting technique
relies on simulation on the automata. For more details we refer to Gurumurthy et al. (2003).

21 Complementing Büchi automata

2.5 Complementing non-determinitic generalized Büchi automata

Since SPOT relies on generalized Büchi acceptance conditions, having a complementation algo-
rithm that works directly on those conditions is interesting. Kupferman and Vardi (2005) have
presented an extension of their method with ranks that works for generalized Büchi automata.
We will present this method in this section.

2.5.1 Ranks updated for generalized acceptance conditions

We introduce ranks for generalized co-Büchi acceptance conditions in the same way that we did
for co-Büchi acceptance conditions.

Let A = (Σ, Q, qin, δ, F) an universal generalized co-Büchi automaton and n = |Q|. The run
ofA on an infinite word can be represented by a directed acyclic graph (DAG) Gr = (V,E), with

• V ⊆ Q× N.

• E ⊆
⋃
l≥0

(Q×{l})× (Q×{l+ 1}) is such that E(〈q, l〉, (q′, l+ 1)) iff there exists a transition

that reaches q′ from q. Formally the condition is q′ ∈ δ(q, σe) with σe ∈ Σ.

Figure 2.8 represents a Generalized co-Büchi automaton with F = { , } and Figure 2.9 its
DAG.

1

2

3

a

a

a

a

a

Figure 2.8: A generalized co-Büchi automaton.

1, 0

2, 1

3, 1

2, 2

3, 2

2, 3

3, 3

a

a

a a a

a a a

a a a

Figure 2.9: A DAG with aω for the automaton in Figure 2.8.

We consider automata with F = {F1, . . . , Fn} as acceptance condition.

2.5 Complementing non-determinitic generalized Büchi automata 22

Definition 2.5.1. A vertex 〈q, l〉 is a Fj-vertex iff q ∈ Fj .
Example: the DAG in Figure 2.3 has an infinite number of -vertices (from the state 3) and

-vertices (from the state 2).

Definition 2.5.2. Consider a DAG G ⊆ Gr. We say that a vertex (q, l) is Fj-free in G iff all the
vertices in G that are reachable from 〈q, l〉 are not Fj-vertices.

Example: the vertices that refers to the state 3 in the DAG in Figure 2.3 are -free since no
acceptance condition can be reach from those vertices.

Definition 2.5.3. Consider a DAG G ⊆ Gr. We say that a vertex (q, l) is finite inG iff only finitely
many vertices in G are reachable from 〈q, l〉.

Given an accepting run π and k the number of accepting conditions, we define an infinite
sequence G0 ⊇ G1

1 ⊇ G2
1 ⊇ · · ·Gk

1 ⊇ Gk+1
1 ⊇ G1

3 ⊇ · · ·Gk+1
3 . . . of DAGs. To simplify notations,

we sometimes refer to Gk+1
2i+1 as G2i+2. Thus, G2 = Gk+1

1 .

• G0 = Gr

• G1
2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite in G2i}

• Gj+1
2i+1 = Gj

2i+1 \ {〈q, l〉 | 〈q, l〉 is Fj-free in Gj
2i+1}, for 1 ≤ j ≤ k.

As for co-Büchi acceptance condition, if π is accepting, then G2n will be empty.

Definition 2.5.4. Each vertex 〈q, l〉 has an unique index i ≥ 1 such that 〈q, l〉 is either finite in
G2i or Fj-free in Gj

2i+1. Given a vertex 〈q, l〉, we define the rank of 〈q, l〉 denoted rank : V → R,
as follows:

rank(〈q, l〉) =

{
2i If 〈q, l〉 is finite in G2i

〈2i+ 1, j〉 If 〈q, l〉 is Fj-free in Gj
2i+1

Example

We can construct DAGs of the generalized co-Büchi automaton in Figure 2.8 to compute the rank
of each vertex. This construction is presented in Figure 2.10.

2.5.2 The complementation

The complementation construction presented in Subsection 2.3.2 can be adapted to generalized
acceptance conditions with some adjustments on ranks.

Given a non-determinitic generalized Büchi automaton A = (Σ, Q, qin, δ, F), we define a
non-deterministic Büchi automaton A′ such that L (A′) = Σω \ L (A). Before we give the
construction method forA′, we need redefine some notations. A level ranking forA is a function
g : Q → R such that g(q) is odd with an index j if q /∈ Fj . Let R be the set of all level rankings.
The definition for covers is the same than in Subsection 2.3.2: for two level rankings g and g′

in R, a set S ⊆ Q, and a letter σe ∈ Σ, we say g′covers〈g, S, σe〉 if for all q ∈ S and q′ ∈ Q, if
q′ ∈ δ(q, σe), then g′(q′) ≤ g(q). Finally, we define odd(g) that contains states to which g gives
an odd rank.

Now, we can construct A′ = (Σ, Q′, q′in, δ
′, F ′) where:

23 Complementing Büchi automata

1, 0

2, 1 2, 2 2, 3
a

a a a

3, 1 3, 2 3, 3
a

a a a

a a a

(a) G0 = Gr

1, 0

2, 1 2, 2 2, 3
a

a a a

3, 1 3, 2 3, 3
a

a a a

a a a

(b) G1
1 = G0 \ {angleq, langle | angleq, langle is finite in G0}

1, 0

2, 1 2, 2 2, 3
a

a a a

3, 1 3, 2 3, 3
a

a a a

a a a

(c) G2
1 = G1

1 \ {angleq, langle | angleq, langle is -free in G1
1}

1, 0

2, 1 2, 2 2, 3
a

a a a

-free vertices

(d) G2 = G2
1 \ {angleq, langle | angleq, langle is -free in G2

1}

1, 0

2, 1 2, 2 2, 3
a

a a a

(e) G1
3 = G2 \ {angleq, langle | angleq, langle is finite in G2}

Figure 2.10: DAG . . .

2.5 Complementing non-determinitic generalized Büchi automata 24

1, 0

-free vertices

(f) G2
3 = G1

3 \ {angleq, langle | angleq, langle is -free in G1
3}

-free ver-
tex

(g) G4 = G2
3 \ {angleq, langle | angleq, langle is -free in G2

3}

1, 0

rank: 2
3

2, 1 2, 2 2, 3

rank: 1
3 rank: 1

3 rank: 1
3

a

a a a

3, 1 3, 2 3, 3

rank: 2
1 rank: 2

1 rank: 2
1

a

a a a

a a a

(h) We can set ranks

Figure 2.10: . . . and ranks of generalized co-Büchi automaton.

25 Complementing Büchi automata

• Q′ = 2Q×2Q×R. A state 〈S,O, g〉 ∈ Q′ indicates that the current level of the DAG contains
the state S and the guessed level ranking for the current level is g. The set O ⊆ S contains
states along paths that have not visited a vertex with an odd rank since the last timeO has
been empty.

• q′in = 〈{qin, ∅, gin}〉, where gin(q) = 2n for all q ∈ Q.

• δ′ is defined, for all 〈S,O, g〉 ∈ Q and σe ∈ Σ, as follows.

– If O 6= ∅, then δ′(〈S,O, g〉, σe) = {〈δ(S, σ), δ(O, σe) \ odd(g′), g′〉 : g′ covers 〈g, S, σe〉}.
– If O = ∅, then δ′(〈S,O, g〉, σe) = {〈δ(S, σe), δ(S, σe)\odd(g′), g′〉 : g′ covers 〈g, S, σe〉}.

• F ′ = 2Q × {∅} ×R.

We illustrate this algorithm in Figure 2.11 that presents the beginning of the complementation
of the automaton in Figure 2.8.

2.5 Complementing non-determinitic generalized Büchi automata 26

{1}, ∅, {6, 6, 6}

{2, 3}, {2, 3}, {6, 6, 6}

{2, 3}, {3}, {6, 1
5, 6}

{2, 3}, ∅, {6, 1
5, 2

5}

...

a

a

a

a

a

a

a

a

a

a
a

a a

Figure 2.11: The beginning of the complementation of the automaton in Figure 2.8.

Chapter 3

Implementation in SPOT

3.1 Complementation on Büchi acceptance conditions

3.1.1 Alternating Automata in SPOT

To implement the complementation algorithm of Büchi acceptance conditions through weak
alternating automata, we have added in SPOT a new interface to represent alternating automata.
We have implemented an interface for a kind of automata that we called saba, for State-based
Alternating Büchi Automata, which is the most common kind of alternating automata.

This interface is inspired by the interface of tgba (Transition-based Generalized Büchi Au-
tomata), which is the kind of automata used in the entire library. Figure 3.1 represents the class
hierarchy of this new interface.

3.1.2 The algorithm

We have implemented the algorithm presented in Section 2.2 in a class that implements the
saba interface. The algorithm follows the construction given previously:

• A state is a pair of an original state with a rank

• Transitions are computed on-the-fly in a class that implements saba_succ_iter.

• Acceptance conditions are store in states.

3.2 Complementation on Generalized Büchi acceptance condi-
tions

We have also implemented the algorithm to complement Generalized Büchi Automata pre-
sented in Section 2.5. This algorithm was implemented without constructing explicitly a weak
alternating automaton. This construction is presented in Subsection 2.5.2. The algorithm im-
plement an interface of tgba in a class called tgba_complement, and can be used with all
the tools provided by SPOT. The construction of the automaton is done on-the-fly since the
successors of a state are computed only on request. Moreover, since this algorithm works for
automata with labels on states, and SPOT relies on automata with labels on transitions, we have
added an algorithm to transform automata with labels on transitions in automata with labels

3.2 Complementation on Generalized Büchi acceptance conditions 28

saba
+ get_init_state() : saba_state*
+ succ_iter(saba_state*) :
saba_succ_iter*

saba_complement

saba_succ_iter
+ first() : void
+ next() : void
+ done() : bool
+ condition() : bdd
+ get_current_conjunction() : saba_state_conjunction*

saba_succ_iter_complement

saba_state_conjunction

+ first() : void
+ next() : void
+ done() : bool
+ current_state() : saba_state*

saba_state
+ acceptance_condition() : bdd

saba_state_complement

Figure 3.1: Class diagram for the family of saba classes

29 Implementation in SPOT

on states. This transformation can produce an automaton with |F | × |Q| states, with |F | the
number of acceptance conditions and |Q| the number of states in the initial automaton. This
transformation is illustrated in Figure 3.2. Transforming an automaton with labels on states
into an automaton with labels on transitions is straightforward. Each transition has to take the
acceptance conditions of its source. This transformation is illustrated in Figure 3.3.

1 2
a

aa

(a) The original automaton
(transitions-labeled)

1

1b

2 2b
a

a

a

a a

a

(b) The transformed automaton (states-labeled)

Figure 3.2: An automaton with labels on transitions into an automaton with labels on states.

1 2

a

b

a

(a) The original automaton
(states-labeled)

1 2

a

b

a

(b) The transformed automa-
ton (transitions-labeled)

Figure 3.3: An automaton with labels on states into an automaton with labels on transitions.

3.3 Testing the implementation

To test whether our implementation works, a simple way is to use algorithms that already exist
in SPOT.

From a logic formula ϕ, we produce the automata Aϕ and A¬ϕ with the help of an algorithm
that traduces a formula into an automaton (Couvreur, 1999). Then we compute ¬Aϕ and ¬A¬ϕ

with our complementation. These two automata should be complementary. To make sure they
are, we compute the synchronized product between those two automata. The synchronized
product produces an automaton that recognizes L (¬Aϕ) ∩L (¬A¬ϕ). If this automaton does
not recognize the empty language, then the complementation has issues.

This kind of tests is already done by LBTT (Tauriainen, 2000; Tauriainen and Heljanko, 2000),
a test suite for logics to automata translators, that is already used in SPOT.

These tests have been done on the algorithm that complements Generalized Büchi acceptance
conditions. Since the algorithm produce a tgba, we can use our tools to test its implementation.
The algorithm that deals with Büchi acceptance conditions via alternating automata has not

3.4 Benchmarks 30

Original Ranks Safra ¬ϕ
st st tr acc st tr acc st tr acc
1 4.3 10.7 1.0 6.0 13.7 1.0 3.0 5.7 1.3
2 19.6 236.9 1.0 11.3 44.2 1.2 2.6 4.9 0.9
3 1595.8 387510.6 1.0 19.4 99.7 1.4 2.7 4.8 1.2
4 6486.3 3757235.0 1.0 33.2 273.3 2.2 3.3 6.5 1.4
5 9060.5 4689062.5 1.0 141.0 730.0 3.0 2.5 6.0 1.0
6 12107.7 81361931.3 1.0 27.2 195.8 2.0 3.0 5.7 1.7
7 x x x 157.0 1325.5 5.0 3.0 7.0 1.0

Table 3.1: Some benchmarks with this new implementation

been tested with these tools since the algorithm to transform a weak alternating automaton into
a tgba is still missing. Generating a display of the alternating automaton was the only way to
test whether the algorithm seems to work.

3.4 Benchmarks

It will be interesting to show some benchmarks between the complementation routines imple-
mented in SPOT (Safra’s construction, Büchi automata through weak automata, generalized
Büchi automata directly into Büchi automata). However, since currently we have no imple-
mentation for the translation from weak alternating automaton to Büchi automaton, we can
compare Safra’s complementation and the direct complementation presented in the report.

The direct complementation uses generalized Büchi acceptance conditions as input, and pro-
duces an automaton with Büchi acceptance conditions. Safra’s complementation takes an au-
tomaton with generalized Büchi acceptance conditions as input, and has a first step to transform
this automaton with Büchi acceptance conditions. It produces an automaton with generalized
Büchi acceptance conditions. It was presented in Sadegh (2009).

Methodology For each formula ϕ from a set of logic formulae, we produce a generalized
Büchi automaton that represents this formula. Then we use our algorithm that relies on ranks,
our previous algorithm that relies on Safra’s complementation, and we also produce the au-
tomaton whose language recognizes ¬ϕ.

For each original automaton with n states, we present the average number of states, transi-
tions and acceptance conditions in the three resulting automata.

Result Table 3.1 presents the results. We can notice that the algorithm that relies on rank has
a really bad behavior, compared to Safra’s complementation. However, both algorithms are
supposed to have the same complexity in term of O(), but in practice we realize that Safra’s
complementation produces automata with a smaller number of states and transitions. We can
notice that from an original automaton with 5 states, the rank based complementation doesn’t
always success to produce a complemented automaton, due to memory overflow.

Chapter 4

Conclusion and perspectives

4.1 Conclusion

SPOT provides an algorithm to complement Büchi automata called Safra’s construction. This
algorithm is supposed to be theoretically optimal, but some algorithm with the same complexity
were presented.

We have started to implement these algorithms that rely on alternating automata and ranks.
Implementing those algorithms has require to introduce a new hierarchy of automata in SPOT
to deal with alternation. In the same time, we have implemented several versions of the original
algorithm: for Büchi acceptance conditions and generalized Büchi acceptance conditions, with
the construction of the alternating automaton or without its construction.

Even with some bricks missing to provide some benchmarks with all the version of this com-
plementation, we have notice with our available implementations that they produce automata
less interesting than Safra’s complementation. But implementing these algorithm was still in-
teresting. We can now add some refinements to these approaches to try to decrease the size
of the resulting automata. Moreover, since SPOT is a library that aims to provide algorithms
that can be useful in model-checking, providing several implementation of a complementation
algorithm is interesting, since an user may choose to use this complementation for a specific
problem.

4.2 Perspectives

Not all the algorithms presented in Chapter 2 have been implemented in SPOT. Implementing
missing algorithms to have a complementation as least as efficient as Safra’s complementation
is the future work that we have to do on SPOT.

4.2.1 Implementing the translation from weak alternating automata to non-
deterministic Büchi automata

We have to implement the translation from weak alternating automata to non-deterministic
Büchi automata presented by Miyano and Hayashi (1984) to have a complementation proce-
dure via alternating automata working. Once this algorithm will be working, we will have a
complementation that produces 2O(n log n) states for an initial Büchi automaton with n states.

4.2 Perspectives 32

Then, we need to add techniques to reduce the size of the intermediate weak alternating au-
tomaton.

4.2.2 Simulations in SPOT

To reduce the size of the alternating automaton a technique is to perform some simulation on
the automaton. SPOT doesn’t provide any routines that works to do this operation. Adding
simulations in SPOT is one of the future operation we would like to provide.

4.2.3 Merging everything

Once we will have some reduction techniques to reduce the size of the alternating automaton,
we will have to merge all the algorithms that we have implemented. Then we will use gen-
eralized Büchi automata with n states and k acceptance conditions as input, we will convert
these automata in weak alternating automata and will reduce these automata. It will produce
non-deterministic Büchi automata with 2O(k·n log k·n) states, which is supposed to be optimal.
However, as it was presented in Section 3.4 the O() notation may hide the fact that another
algorithm with the same complexity can be better.

Chapter 5

References

Büchi, J. R. (1962). On a decision method in restricted second order arithmetic. In Proceedings
of the International Congress on Logic, Methodology, and Philosophy of Science, Berkley, 1960, pages
1–11. Standford University Press. Republished in Lane and Siefkes (1990).

Couvreur, J.-M. (1999). On-the-fly verification of temporal logic. In Wing, J. M., Woodcock, J.,
and Davies, J., editors, Proceedings of the World Congress on Formal Methods in the Development of
Computing Systems (FM’99), volume 1708 of Lecture Notes in Computer Science, pages 253–271,
Toulouse, France. Springer-Verlag.

Duret-Lutz, A. and Poitrenaud, D. (2004). Spot: an extensible model checking library using
transition-based generalized Büchi automata. In Proceedings of the 12th IEEE/ACM Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS’04), pages 76–83, Volendam, The Netherlands. IEEE Computer Society Press.

Gurumurthy, S., Kupferman, O., Somenzi, F., and Vardi, M. Y. (2003). On complementing non-
determinisitic Büchi automata. In Proceedings of the 12th Advanced Research Working Conference
on Correct Hardware Design and Verification Methods (CHARME’03), volume 2860 of Lecture Notes
in Computer Science, pages 96–110. Springer-Verlag.

Kupferman, O. and Vardi, M. (2005). From complementation to certification. Theoretical Com-
puter Science, 345(1):83–100.

Kupferman, O. and Vardi, M. Y. (1997). Weak alternating automata are not that weak. In
Proceedings of the 5st Israeli Symposium on Theory of Computing and Systems (ISTC’97), pages 147–
158. IEEE Computer Society Press.

Lane, S. M. and Siefkes, D., editors (1990). The Collected Works of J. Richard Büchi. Springer-
Verlag.

Löding, C. (1999). Optimal bounds for transformations of ω-automata. In Proceedings of the 19th
Conference on Foundations of Software Technology and Theoretical Computer Science, pages 97–109.

Michel, M. (1988). Complementation is more difficult with automata on infinite words. CNET,
Paris, manuscrit cited by Löding (1999).

Miyano, S. and Hayashi, T. (1984). Alternating finite automata on ω-words. Theoretical Com-
puter Science, 32:321–330.

REFERENCES 34

Muller, D. E., Saoudi, A., and Shupp, P. E. (1986). Alternating automata, the weak monadic
theory of the tree and its complexiy. In Kott, L., editor, Proceedings 13th of the International
Colloquium on Automata, Languages and Programming (ICALP’86), volume 226 of Lecture Notes in
Computer Science, pages 233–244. Springer.

Sadegh, G. (2009). Complementing Büchi automata. Technical report, EPITA Research and
Development Laboratory (LRDE).

Safra, S. (1988). On the complexity of ω-automata. In SFCS ’88: Proceedings of the 29th Annual
Symposium on Foundations of Computer Science, pages 319–327, Washington, DC, USA. IEEE
Computer Society.

Sistla, A. P., Vardi, M. Y., and Wolper, P. (1985). The complementation problem for Büchi
automata with applications to temporal logic (extended abstract). In Proceedings of the 12th
Colloquium on Automata, Languages and Programming, pages 465–474.

Tauriainen, H. (2000). Automated testing of Büchi automata translators for Linear Temporal
Logic. Research Report A66, Helsinki University of Technology, Laboratory for Theoretical
Computer Science, Espoo, Finland. Reprint of Master’s thesis.

Tauriainen, H. and Heljanko, K. (2000). Testing SPIN’s LTL formula conversion into Büchi
automata with randomly generated input. In Havelund, K., Penix, J., and Visser, W., editors,
Proceedings of the 7th International SPIN Workshop on Model Checking of Software (SPIN’2000),
volume 1885 of Lecture Notes in Computer Science, pages 54–72, Stanford University, California,
USA. Springer-Verlag.

Vardi, M. Y. (2007). The Büchi complementation saga. In Proceedings of the 17th Symposium on
Theoretical Aspects of Computer Science (STACS’07), Aachen, Germany. Invited paper.

	Introduction
	1 Automata on infinite words
	1.1 Definitions
	1.1.1 -automata
	1.1.2 Mode of transition-function
	1.1.3 Acceptances conditions

	1.2 Operations on -automata
	1.2.1 Complementation

	2 Complementing Büchi automata
	2.1 Ranks and complementation
	2.2 From universal co-Büchi to weak alternating automata
	2.3 Complementing non-determinitic Büchi automata
	2.3.1 Complementation via alternating automata
	2.3.2 Complementation without alternating automata

	2.4 Simplifications of alternating automata
	2.5 Complementing non-determinitic generalized Büchi automata
	2.5.1 Ranks updated for generalized acceptance conditions
	2.5.2 The complementation

	3 Implementation in Spot
	3.1 Complementation on Büchi acceptance conditions
	3.1.1 Alternating Automata in Spot
	3.1.2 The algorithm

	3.2 Complementation on Generalized Büchi acceptance conditions
	3.3 Testing the implementation
	3.4 Benchmarks

	4 Conclusion and perspectives
	Conclusion and perspectives
	4.1 Conclusion
	4.2 Perspectives
	4.2.1 Implementing the translation from weak alternating automata to non-deterministic Büchi automata
	4.2.2 Simulations in Spot
	4.2.3 Merging everything

	5 References

