Snakes

Active contours models for boundary detection

Astrid Wang <astrid@lrde.epita.fr>

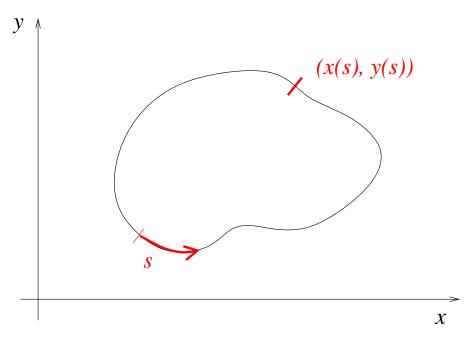
LRDE seminar, May 14, 2003

Introduction

General points

- Developed by Kass et al. in 1987 [Kass 1987]
- Adjusts a contour on an object

Characteristics


- Edge-based method
- Refine the results of an initial segmentation

Outline

- Definition
- Snakes equations
- Design
- Applications

Definition

- Evolving contour
- Defined parametrically as: v(s) = [x(s), y(s)], where s is the curvilinear abscissa

Definition 2/2

- Each state of the snake is associated with an *energy*
- Analogy with physics:
 - \rightarrow Evolution towards stationary state of minimal energy

Procedure

1. Initialization

Place the snake near the contour of interest

- Discrete initialization ⇒ Control points (e.g. *spline*)
- Enough control points

2. Evolution

Snake shape and location affected by forces iteratively

- Internal forces
- Image forces
- External constraint forces

Forces applied to the snake

Internal contour forces

Make the snake tend to be more continuous and smooth

Image forces

Draws the contour towards the closest image edges.

External forces

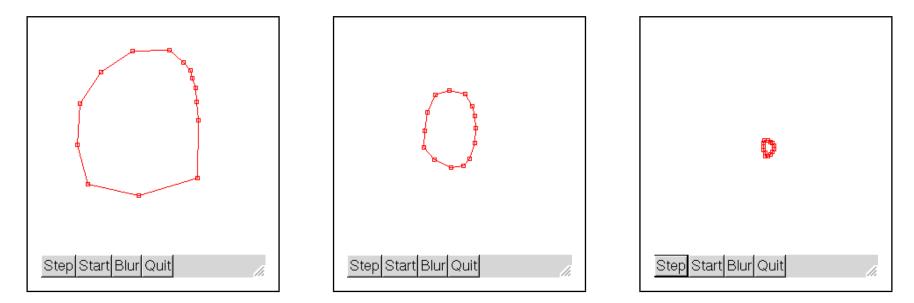
Force the snake in some *a priori* known direction or shape.

Snake equations

• Continuous case:

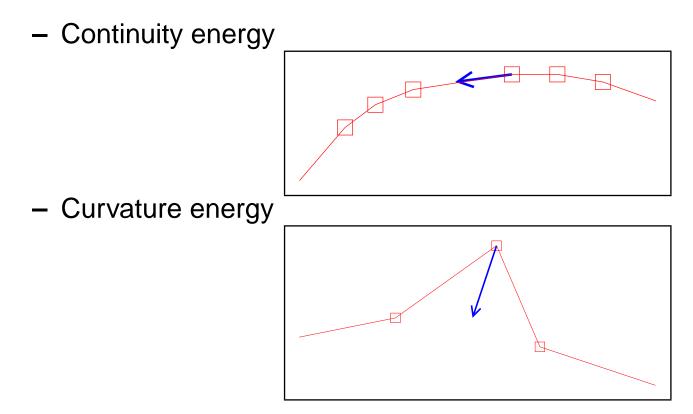
Minimize

$$E_{S} = \int_{0}^{1} E_{Internal}(v(s)) \, ds + \int_{0}^{1} E_{Image}(v(s)) \, ds + \int_{0}^{1} E_{External}(v(s)) \, ds$$
 (1)


• Discrete case:

Minimize

$$E_{S} = \sum_{n=1}^{N} E_{Internal}(v_{n}) + \sum_{n=1}^{N} E_{Image}(v_{n}) + \sum_{n=1}^{N} E_{External}(v_{n})$$
 (2)


Internal energy

- The snake should be *continuous* and *smooth*
- $\Rightarrow\,$ Tends to become circular

Continuous and smooth

• Internal energy is composed of two energies:

Internal :: The Continuity term

• The continuity energy is expressed by the first derivative:

$$E_{Continuity} = \left|\frac{dv}{ds}\right| \tag{3}$$

• Discrete case expressed by a finite difference:

$$E_{Continuity} = |v_n - v_{n-1}| \tag{4}$$

Tries to minimize the distance between the points... ... but the contour shrinks.

Internal :: The Continuity term 2/2

• Spread the points equally along the snake:

$$E_{Continuity} = \bar{d} - |v_n - v_{n-1}| \tag{5}$$

where \bar{d} is the average distance between the points of the snake

• Normalization:

$$E_{Continuity} = \frac{\bar{d} - |v_n - v_{n-1}|}{MAX\{\bar{d} - |v_n(j) - v_{n-1}|\}}$$
(6)

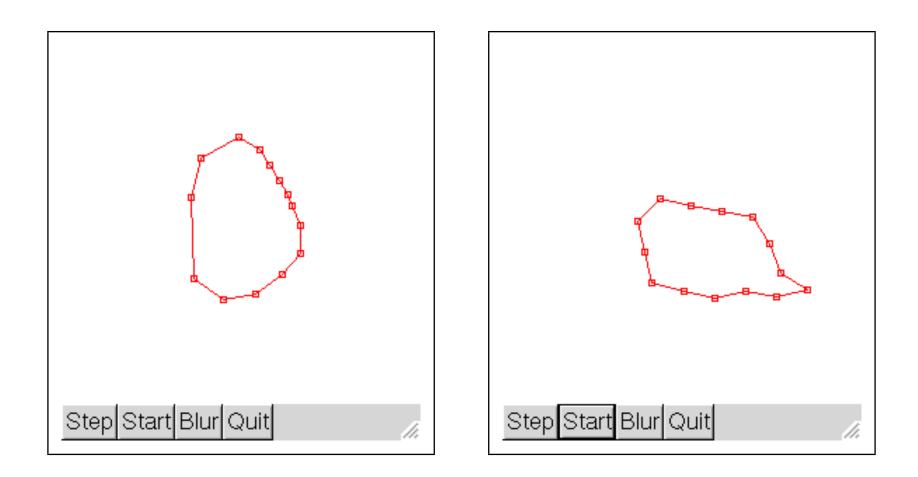
where $v_n(j)$ represents the neighbors of a point v_n

Internal :: The Curvature term (smoothness term)

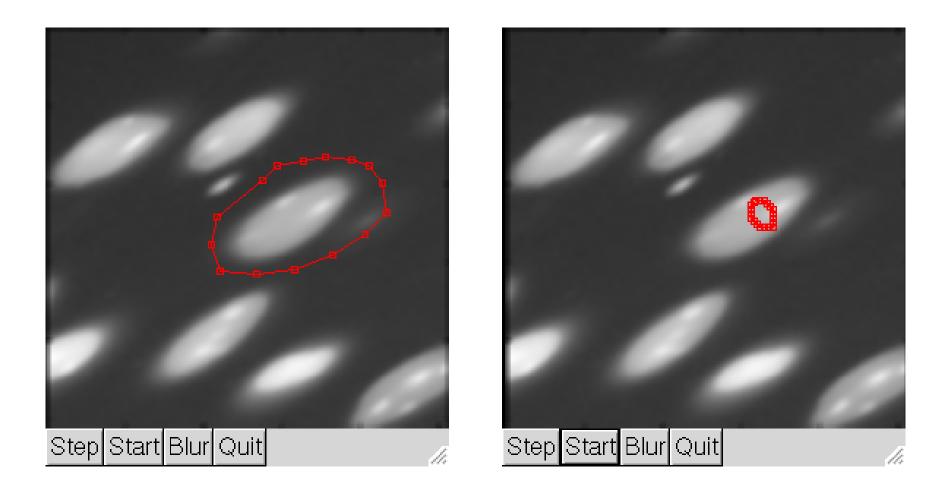
- To enforce smoothness and avoid oscillations of the snake
- \Rightarrow Penalizing high contour curvatures
 - The curvature energy is expressed by the second derivative:

$$E_{Curvature} = \left|\frac{d^2v}{ds^2}\right|^2 \tag{7}$$

• Discrete case:


$$E_{Curvature} = \frac{|v_{n-1} - 2v_n + v_{n+1}|^2}{MAX\{|v_{n-1} - 2v_n(j) + v_{n+1}|^2\}}$$
(8)

Let's play with Internal energy


$$E_{Internal} = \alpha(n) E_{Continuity}(v_n) + \beta(n) E_{Curvature}(v_n)$$
(9)

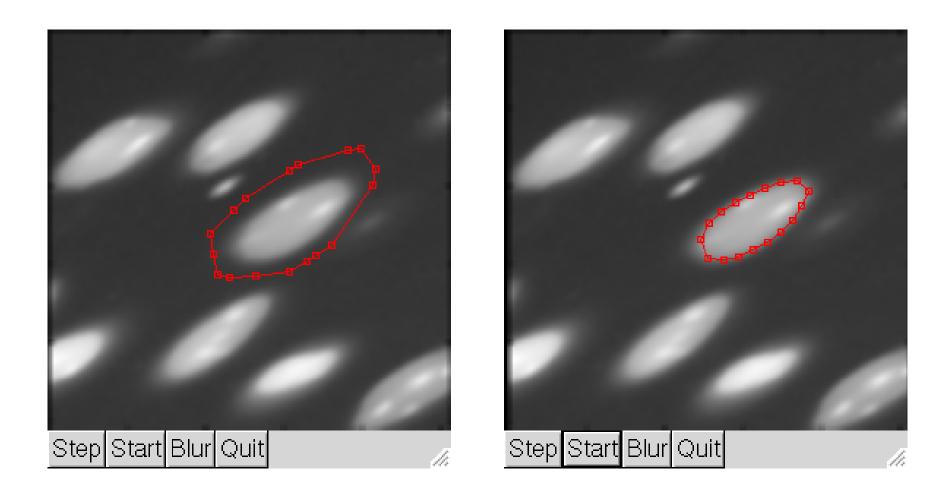
- But in general, α and β are chosen constant.
- $\Rightarrow\,$ There are various ways to combine those energies, depending on the values of α and β

Example with $\alpha \neq 0$ and $\beta = 0$

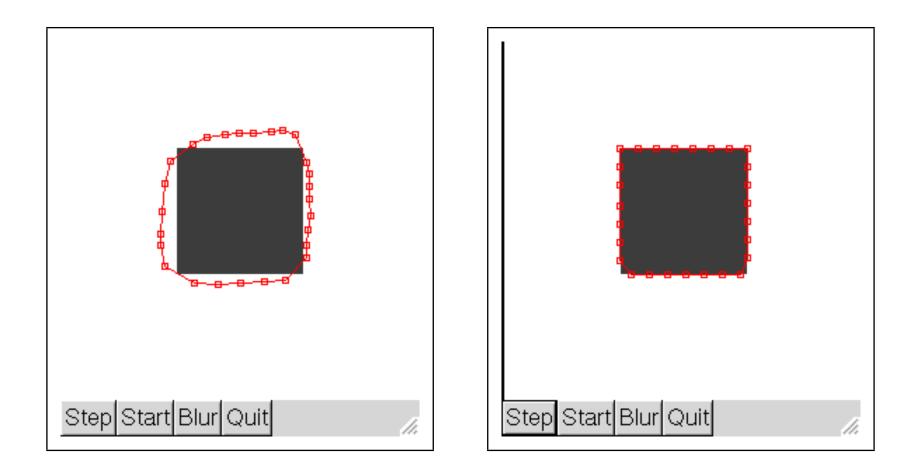
Example with $\alpha \neq 0$ and $\beta \neq 0$

Image energy

Image energy 2/2


• Gradient intensity computed at each snake point

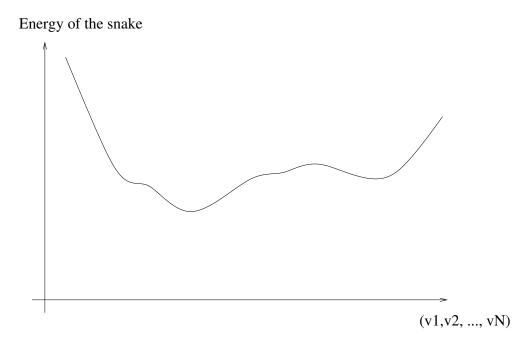
$$E_{Image} = -|\nabla I| \tag{10}$$


• Normalization:

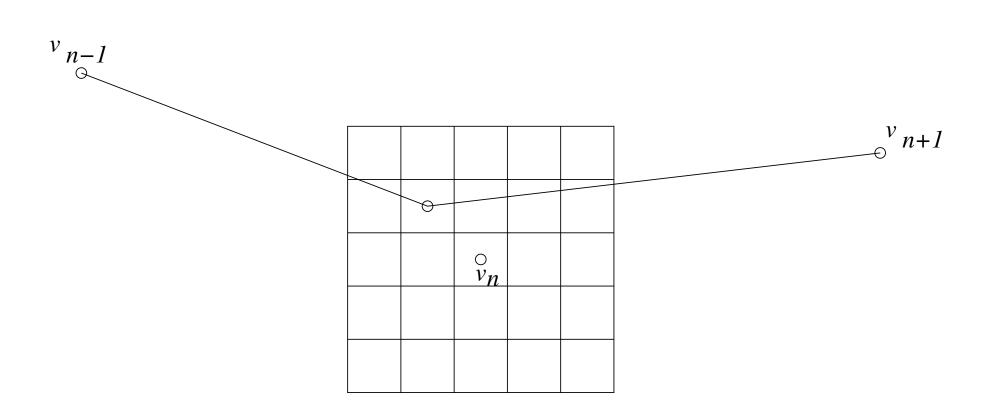
$$E_{Image} = \frac{\nabla_{min} - \nabla_j}{\nabla_{max} - \nabla_{min}} \tag{11}$$

Example with $\alpha\simeq\beta$

Example with $\beta \ll \alpha$



External energy


- High-level a priori information on the object:
 - Global shape of the object
 - Directional gradient
 - Should the snake blow or shrink ?

Design

- Minimization problem
- \Rightarrow Find a local or global minimum to the snake energy.

Greedy algorithm

Snakes applications

- Numerous biomedical applications:
 - Analysis of images of the retina
 - Automatic heart detection
 - Detection of malignant cells
 - Detection of arteries

...

. . .

• Automatic tracking of an object in an image sequence

Use case

- Snakes are noise-sensitive
 - \Rightarrow Need a textureless environment to evolve in
 - \Rightarrow The closest initialization, the better
- Inability to mold a contour to severe object concavities
- Can't be cut into two pieces

Conclusion

- Implementation in the image processing library Olena
- A basic GUI
- Still some (many ?) things to change to make it work better
 - Automatic initialization
 - Automatic finding of α and β coefficients
 - Avoid the creation of unwanted contour loops [Ji 1999]
- Include snakes in AdHoc project ?

References

• Seminar Report:

http://www.lrde.epita.fr/cgi-bin/twiki/view/Publications/20030514-Seminar-Wang-Report

• Articles

[Kass 1987] M. Kass, A. Witkin, and D, Terzopoulos. "Snakes: Active Contour Models". IEEE First International Conference on Computer Vision, 1987.

[Williams 1992] D. J. Williams and M. Shah. "A fast algorithm for active contours and curvature estimation". CVGIP, 1992.
 [Ji 19999] L. Ji and H. Yan. "Loop-Free Snakes for Image Segmentation". Proc. 1999 International Conference on Image Processing, Kobe, Japan.

Books

- W. K. Pratt. "Digital image processing Third edition". John Ziley & Sons, 2001.
- J.-P. Cocquerez and S. Philipp, et al. "Analyse d'images : filtrage et segmentation". Masson, 1995.
- M. Sonka, V. Hlavac and R. Boyle. "Image processing, Analysis, and Machine Vision Second edition". International Thomson Publishing, 1998.