
Implementing Attributes in SDF

Alexandre Borghi Valentin David Akim Demaille Olivier Gournet

Epita Research and Development Laboratory (LRDE∗)

Abstract

Attribute Grammars (AGs) provide a very con-
venient means to bind semantics to syntax.
They enjoy an extensive bibliography and are
used in several types of applications. Yet, to
our knowledge, their use to disambiguate is
novel. We present our implementation of an
evaluator of attributes for ambiguous AGs, tai-
lored to ambiguous parse trees disambiguation.
This paper focuses on its implementation that
heavily relies on Stratego/XT, which is also used
as language to express the attribute rules. A
companion paper presents the disambiguation
process in details (David et al., 2005).

1 Introduction

In any typical compiler, or structured text
crunching application, semantic passes follow
the usual parser. Some of these passes are gath-
erers and merely compute additional informa-
tion about the Abstract Syntax Tree (AST): bind-
ing, type-checking. Other passes involve mod-
ification of the AST, or even its full rewrite:
desugaring, translation to another language etc.
Stratego is a language of choice to express the
latter kind of passes, where rewriting rules are
the core of the process. ASF+SDF on the one
hand, and Stratego with its dynamic rules on
the other hand, will both happily help one to
write annotating passes. Weirdly enough, the
old and well-known AGs (Knuth, 1968) do not
seem to have make it into this world, although
they are very well suited to write gather-and-
annotate passes.

An AG is a context-free grammar enriched
with attributes bound to its symbols, and rules
attached to its production rules to express the
relationship between the attributes of the sym-
bols of the rule. A very specific feature of AGs is
∗<transformers@lrde.epita.fr>

that these local relationships suffice: their anal-
ysis reveals their dependencies, from which the
order of evaluation is computed. In other words
the user focuses on local issues, and the sys-
tem conducts the global evaluation. Evaluation
strategies range from extremely naive (repeat-
edly traverse the tree and compute attributes
which definition uses computed attributes), to
extremely smart (“compile” the AG into an
evaluator which makes the best use of statically
computed dependencies).

This paper presents a functional (naive) pro-
totype supporting attributes in Syntax Defini-
tion Formalism (SDF). As a novel feature, our
proposal supports ambiguous AGs: attributes
are computed on parse forests. This makes
it possible to express disambiguation filters
thanks to attributes: a special attribute is used
to flag branches that are incorrect according to
semantic rules; a latter filter prunes them.

2 Current implementation

The package sdf-attribute is a set of tools re-
lying on Stratego/XT to provide attributes sup-
port within SDF. It includes an extended SDF
grammar to specify the syntax of attribute rules
(Sec. 2.1). An extended SDF grammar is pro-
cessed by a chain of tools in order (i) to check
that the attribute rules are complete, and (ii)
to compile the attribute rules into an evaluator
(Sec. 2.2). Finally, this evaluator in run on an
actual input to evaluate the attributes (Sec. 2.3).

2.1 Syntax

Attribute rules are embeded into SDF gram-
mars via annotations (Fig. 1). In the future,
a nicer syntax might be proposed. Each at-
tribute has a name and a name space name,
written NodeName.namespace:name. The op-
tional name space name defaults to that of the

1

mailto:alexandre.borghi@lrde.epita.fr
mailto:jesus@lrde.epita.fr
mailto:akim@lrde.epita.fr
mailto:olivier.gournet@lrde.epita.fr
mailto:transformers@lrde.epita.fr


1 e1:Exp "+" e2:Exp → Exp
2 {attributes(eval:
3 root.value := <add> (e1.value, e2.value)
4 )}

Attribute rules are (currently) regular SDF annotations under the name attributes. To avoid
attribute name clashes, named scopes are provided (eval in line 2). The SDF symbol labeling
feature provides convenient shorthands for symbol names, or when symbols occur several times
(two Exps in line 3). The special identifier root refers to the symbol defined, here Exp.

Figure 1: Example of attributes

rule list.
A rule specifies the value of an attribute via

a Stratego strategy as follows: Node.attr :=
strategy. Within the strategies themselves, at-
tributes are used like ordinary Stratego vari-
ables.

The node name is either root to refer to the
produced non terminal, or the symbol name, or
a label name. Label names are useful when a
child is not a simple symbol (lists, options, etc.)
or when symbol name is used several times.

2.2 Evaluator Generation

pack-esdf

parse-attrsdf-definition

attrs-desugar

embed-attributes

sdf2table

deembed-attributes

sdf-labelize

attr-desugar-magic

attrs-buildrules

parse table

Language SDF modules AttrSdf

boxed2pp-table

pp-table

pp-pp-table

attrsdf2table

strc

evaluator

eval-attributerules

Figure 2: Parse table generation

The SDF modules are packed according to
AttrSdf, which extend SDF with our attribute
syntax. This is performed by esdf described in
another paper (Demaille et al., 2005). Then, a

parse table and an evaluator are genererated by
the whole attrsdf2table chain, composed of
several steps (Fig. 2).

Firstly, desugaring filters are run on the
syntax definition to handle details such as
adding implicit name spaces (attrs-desugar).
In order to have sdf2table accept the Strat-
ego code in the annotations, some trans-
formations are applied (embed-attributes)
and reversed afterwards in the parse table
(deembed-attributes). Then, missing labels
are inserted (sdf-labelize).

The next filter (attr-desugar-magic) ad-
dresses two important issues. First, at this
stage, it is useful to check whether the attribute
rules are well written or not. Since there is
no debugging tool it is better to find and re-
port errors instead of creating an invalid table.
This definition checker traverses the graph of
all possible trees beginning from the start sym-
bols, carrying knowledge about attributes de-
pendency. Second, taking advantage of this
traversal, it also automatically propagates at-
tributes which were declared inherited or syn-
thesized, by adding the implicit rules. This is
convenient symbol tables for instance.

Finally, attribute rule code is extracted from
the parse table (attr-buildrules), and put in
a rules section in a Stratego source file. It is
compiled along with the tree traversal code
(eval-attribute) to provide a filter to be used
in the evaluator. This code is then erased from
the parse table, to keep it as simple as possi-
ble. Only dependencies between synthesized
and inherited attributes rules are kept for each
node, to help the evaluation.

2.3 Evaluation

The evaluation of attributes is also performed
by a chain of tools, presented in Fig. 3. SGLR

2



Figure 3: Evaluation process

Figure 4: Making attribute more accessible

is run using our tailored parse table to parse
a source file. The resulting AsFix tree has at-
tribute rules dependency and label tables as
production annotations. To ease the evalua-
tion, prepare-attributes moves them a more
accessible place as shown on Fig. 4. In addition,
an empty list is added to accept future attribute
values.

Then eval-attributes, the evaluator com-
piled from the attribute rules, evaluates the tree
using dynamic rules. The traversal depends
on what is computed: when new attributes are
evaluated, its dependencies can be visited. Af-
terward, clean-attributes can transform the
tree back into regular AsFix as shown on the fig-
ure 5. The attribute values are put into produc-
tion rule annotations. This tree can be imploded
into an AST with attribute values as annotations
(attr-implode).

Figure 5: Back to regular AsFix

3 Discussion

This implementation of attribute grammars in
SDF was developped over a few weeks, in order
to provide a disambiguate-by-AG framework
for the Transformers project (David et al., 2005).
Many inspiring AG system exist; eventually our
system will be completely rewritten to address
its shortcomings.

3.1 Related Work

Of the many existing AG systems, a few caught
our attention.

JastAdd II (Hedin and Magnusson, 2001)
is a language implementation tool supporting
generation of compilers using extended AGs:
Rewritable Reference Attribute Grammars
(ReRAGs) and ordinary Java code. To test their

3



work they implemented a Java 1.4 compiler
which is only four times slower than the hand
written javac compiler. They seem to be using
their AG to specialize their ASTs, a (weak) form
of disambiguation. Their AG system is power-
ful and offers interesting features to shorten the
AGs.

Similarly, the UU-AG system (Baars et al.,
1999), developped at the University of Utrecht,
features nice concepts to factor rules. It also
benefits from features of its target language,
Haskell, to spare traversals.

3.2 Further Work

The current implementation of the attribute
evaluator was quickly written and had for only
goal to serve our needs. Hence, its implementa-
tion is naive and was designed to be as easy to
implement in Stratego as it could be. As a con-
sequence, the performance are poor, although
a thorough comparison with other system was
not done.

A new evaluator will be written to speed up
the evaluation. The current evaluator is fully
dynamic, although a lot of work can be done
statically: to control the data flow between at-
tributes an order of evaluation can be computed
from specificities of the grammar and the at-
tributes associated with.

The implementation language, and the lan-
guage into which attribute rules are written is
also subject to debate within our group. Some
members believe that if Stratego is powerful in
term rewriting, the evaluator does not need this
specific feature and needs high speed in other
ones.

4 Conclusion

In this paper we presented a simple but effec-
tive implementation of AGs for possibly am-
biguous grammars in the world of SDF, us-
ing Stratego/XT as an implementation and ex-
ecution framework. Lots of issues remain to
be addressed: syntax improvement, additional
features, formalization, and comparison with
other information gathering schemes. This pro-
posal nevertheless suffice to fully disambiguate
ISO-C99, and even the most complex parts of
C++. We are now looking forward meeting in-
teresting in our system, and its development.

References

Baars, A., Swierstra, D., and Löh, A. (1999).
UU-AG System. http://catamaran.labs.
cs.uu.nl/twiki/st/bin/view/Center/
AttributeGrammarSystem.

David, V., Demaille, A., Durlin, R., and Gour-
net, O. (2005). C/C++ Disambiguation Using
Attribute Grammars. Submitted to Stratego
Users Day 2005.

Demaille, A., Largillier, T., and Pouillard, N.
(2005). ESDF: A proposal for a more flexible
SDF handling. Submitted to Stratego Users
Day 2005.

Hedin, G. and Magnusson, E. (2001). Jas-
tAdd. http://www.cs.lth.se/Research/
ProgEnv/rags/.

Knuth, D. E. (1968). Semantics of context-free
languages. Journal of Mathematical System The-
ory, pages 127–145. Not read, but according
to all other references, it is the first text on
attribute grammars.

4

http://catamaran.labs.cs.uu.nl/twiki/st/bin/view/Center/AttributeGrammarSystem
http://catamaran.labs.cs.uu.nl/twiki/st/bin/view/Center/AttributeGrammarSystem
http://catamaran.labs.cs.uu.nl/twiki/st/bin/view/Center/AttributeGrammarSystem
http://www.cs.lth.se/Research/ProgEnv/rags/
http://www.cs.lth.se/Research/ProgEnv/rags/

	Introduction
	Current implementation
	Syntax
	Evaluator Generation
	Evaluation

	Discussion
	Related Work
	Further Work

	Conclusion

