series_base.hxx

00001 // series_base.hxx: this file is part of the Vaucanson project.
00002 //
00003 // Vaucanson, a generic library for finite state machines.
00004 //
00005 // Copyright (C) 2001, 2002, 2003, 2004, 2006 The Vaucanson Group.
00006 //
00007 // This program is free software; you can redistribute it and/or
00008 // modify it under the terms of the GNU General Public License
00009 // as published by the Free Software Foundation; either version 2
00010 // of the License, or (at your option) any later version.
00011 //
00012 // The complete GNU General Public Licence Notice can be found as the
00013 // `COPYING' file in the root directory.
00014 //
00015 // The Vaucanson Group consists of people listed in the `AUTHORS' file.
00016 //
00017 #ifndef VCSN_ALGEBRA_CONCEPT_SERIES_BASE_HXX
00018 # define VCSN_ALGEBRA_CONCEPT_SERIES_BASE_HXX
00019 
00020 # include <vaucanson/algebra/concept/series_base.hh>
00021 # include <vaucanson/misc/usual_macros.hh>
00022 
00023 namespace vcsn {
00024 
00025   namespace algebra {
00026 
00027     /*-----------------.
00028     | SeriesBase<Self> |
00029     `-----------------*/
00030 
00031     template<class Self>
00032     const typename SeriesBase<Self>::monoid_t&
00033     SeriesBase<Self>::monoid() const
00034     {
00035       return this->self().monoid();
00036     }
00037 
00038     template<class Self>
00039     const typename SeriesBase<Self>::semiring_t&
00040     SeriesBase<Self>::semiring() const
00041     {
00042       return this->self().semiring();
00043     }
00044 
00045     template<class Self>
00046     typename SeriesBase<Self>::monoid_t&
00047     SeriesBase<Self>::monoid()
00048     {
00049       return this->self().monoid();
00050     }
00051 
00052     template<class Self>
00053     typename SeriesBase<Self>::semiring_t&
00054     SeriesBase<Self>::semiring()
00055     {
00056       return this->self().semiring();
00057     }
00058 
00059     template<class Self>
00060     SeriesBase<Self>::SeriesBase()
00061     {}
00062 
00063     template<class Self>
00064     SeriesBase<Self>::SeriesBase(const SeriesBase& other) :
00065       SemiringBase<Self>(other)
00066     {}
00067 
00068   } // algebra
00069 
00070 
00071     /*---------------------------------.
00072     | MetaElement<SeriesBase<Self>, T> |
00073     `---------------------------------*/
00074 
00075   template<typename S, typename T>
00076   typename MetaElement<algebra::SeriesBase<S>, T>::semiring_elt_value_t
00077   MetaElement<algebra::SeriesBase<S>, T>::get(const monoid_elt_value_t& m) const
00078   {
00079     // assertion(structure().monoid().contains(m));
00080     return op_series_get(this->structure(), this->value(), m);
00081   }
00082 
00083   template<typename S, typename T>
00084   typename MetaElement<algebra::SeriesBase<S>, T>::semiring_elt_t
00085   MetaElement<algebra::SeriesBase<S>, T>::get(const monoid_elt_t& m) const
00086   {
00087     return semiring_elt_t(this->structure().semiring(), get(m.value()));
00088   }
00089 
00090   template<typename S, typename T>
00091   void
00092   MetaElement<algebra::SeriesBase<S>, T>::assoc(const monoid_elt_value_t& m,
00093                                                 const semiring_elt_value_t& w)
00094   {
00095     // assertion(structure().monoid().contains(m));
00096     // assertion(structure().semiring().contains(w));
00097     return op_series_set(this->structure(), this->value(), m, w);
00098   }
00099 
00100   template<typename S, typename T>
00101   void
00102   MetaElement<algebra::SeriesBase<S>, T>::assoc(const monoid_elt_t& m,
00103                                                 const semiring_elt_t& w)
00104   {
00105     assoc(m.value(), w.value());
00106   }
00107 
00108   template<typename S, typename T>
00109   bool
00110   MetaElement<algebra::SeriesBase<S>, T>::is_finite_app() const
00111   {
00112     return op_is_finite_app(this->structure(), this->value());
00113   }
00114 
00115   template <typename S, typename T>
00116   typename MetaElement<algebra::SeriesBase<S>, T>::monoid_elt_t
00117   MetaElement<algebra::SeriesBase<S>, T>::choose_from_supp() const
00118   {
00119     return
00120       typename MetaElement<algebra::SeriesBase<S>, T>::monoid_elt_t
00121       (this->structure().monoid(),
00122        op_choose_from_supp(this->structure(), this->value()));
00123   }
00124 
00125   template <typename S, typename T>
00126   void
00127   MetaElement<algebra::SeriesBase<S>, T>::transpose()
00128   {
00129     op_in_transpose(this->structure(), this->value());
00130   }
00131 
00132   template <typename S, typename T>
00133   typename MetaElement<algebra::SeriesBase<S>, T>::support_t
00134   MetaElement<algebra::SeriesBase<S>, T>::supp() const
00135   {
00136     return op_support(this->structure(), this->value());
00137   }
00138 
00139   template<typename S, typename T>
00140   MetaElement<algebra::SeriesBase<S>, T>::MetaElement()
00141   {}
00142 
00143   template<typename S, typename T>
00144   MetaElement<algebra::SeriesBase<S>, T>::MetaElement(const MetaElement& other) :
00145     MetaElement<algebra::SemiringBase<S>, T>(other)
00146   {}
00147 
00148   template<typename S, typename T>
00149   bool op_is_finite_app(const algebra::SeriesBase<S>& s, const T& t)
00150   {
00151     return false;
00152   }
00153 
00154   template<typename S, typename T, typename M, typename W>
00155   void op_series_structure(const algebra::SeriesBase<S>& s, const T& t, const W& w)
00156   {
00157     pure_service_call ("default implementation of op_series_structure()");
00158   }
00159 
00160   template <class S, class T>
00161   Element<S, T> op_series_choose(const algebra::SeriesBase<S>& s, SELECTOR(T))
00162   {
00163     pure_service_call ("default implementation of op_series_choose()");
00164     return Element<S, T>();
00165   }
00166 
00167   template <class S, class T>
00168   typename algebra::series_traits<T>::support_t
00169   op_support(const algebra::SeriesBase<S>&, const T& v)
00170   {
00171     return v;
00172   }
00173 
00174   template <class S, class T>
00175   Element<S, T>
00176   transpose(const algebra::SeriesBase<S>& s, const T& t)
00177   {
00178     T   new_t(t);
00179     new_t.transpose();
00180     return new_t;
00181   }
00182 
00183   template <class S, class T>
00184   bool
00185   is_letter_support(const Element<S, T>& s)
00186   {
00187     typedef typename algebra::series_traits<T>::support_t support_t;
00188     support_t supp = s.supp();
00189     for_all_const_(support_t, e, supp)
00190       if (op_size(s.structure().monoid(), *e) != 1)
00191         return false;
00192     return true;
00193   }
00194 
00195   template <typename S1, typename S2, typename T1, typename T2>
00196   void
00197   extract_support(Element<S1, T1>& s1, Element<S2, T2>& s2)
00198   {
00199     typedef typename algebra::series_traits<T2>::support_t support_t;
00200     typedef typename algebra::series_traits<T1>::semiring_elt_value_t
00201       semiring_elt_value_t;
00202     for_all_const_(support_t, e, s2.supp())
00203       s1.assoc(*e,
00204                algebra::identity_as<semiring_elt_value_t>::
00205                of(s1.structure().semiring()));
00206   }
00207 
00208   template <class S, class T>
00209   Element<S, T> hadamard(const Element<S, T>& lhs,
00210                          const Element<S, T>& rhs)
00211   {
00212     typedef Element<S, T> series_set_elt_t;
00213     typedef typename Element<S, T>::monoid_elt_t monoid_elt_t;
00214     typedef typename Element<S, T>::semiring_elt_t semiring_elt_t;
00215     typedef typename Element<S, T>::support_t support_t;
00216     Element<S, T> output;
00217     support_t support = lhs.supp();
00218     for (typename support_t::iterator supp = support.begin();
00219          supp != support.end();
00220          ++supp)
00221     {
00222       output +=  lhs.get(*supp) *
00223         rhs.get(*supp) * series_set_elt_t(lhs.structure(), monoid_elt_t(*supp));
00224     }
00225     return output;
00226   }
00227 
00228   template <class S, class M>
00229   S
00230   op_convert(const algebra::SeriesBase<S>&,
00231              const algebra::FreeMonoidBase<M>& monoid)
00232   {
00233     // Ensures the monoid is compatible with the series.
00234     enum { compatible = misc::static_eq<typename S::monoid_t, M>::value };
00235     static_assertion_(compatible, invalid_conversion_from_monoid_to_series);
00236 
00237     typename S::semiring_t semiring;
00238     return S (semiring, monoid.self());
00239   }
00240 
00241   template <class S, class T>
00242   T op_convert(const algebra::SeriesBase<S>&, SELECTOR(T), const T& src_)
00243   {
00244     return src_;
00245   }
00246 
00247   template <class S, class T, class U>
00248   T op_convert(const algebra::SeriesBase<S>& s, SELECTOR(T), const U& src_)
00249   {
00250     typedef typename algebra::series_traits<U>::support_t       support_t;
00251     typedef typename Element<S, T>::monoid_elt_t                monoid_elt_t;
00252     S ts = s.self();
00253     Element<S, U> src(ts, src_);
00254     Element<S, T> dst(ts);
00255     support_t support = src.supp();
00256     for_all_const_(support_t, ss, support)
00257       dst += src.get(monoid_elt_t(s.monoid(), *ss)) *
00258       Element<S, T>(s.self(), monoid_elt_t(s.monoid(), *ss));
00259     return dst.value();
00260   }
00261 
00262 } // vcsn
00263 
00264 #endif // ! VCSN_ALGEBRA_CONCEPT_SERIES_BASE_HXX

Generated on Sat Jul 29 17:13:10 2006 for Vaucanson by  doxygen 1.4.6