freemonoid_product_base.hxx

00001 // freemonoid_product_base.hxx: this file is part of the Vaucanson project.
00002 //
00003 // Vaucanson, a generic library for finite state machines.
00004 //
00005 // Copyright (C) 2004, 2005, 2006 The Vaucanson Group.
00006 //
00007 // This program is free software; you can redistribute it and/or
00008 // modify it under the terms of the GNU General Public License
00009 // as published by the Free Software Foundation; either version 2
00010 // of the License, or (at your option) any later version.
00011 //
00012 // The complete GNU General Public Licence Notice can be found as the
00013 // `COPYING' file in the root directory.
00014 //
00015 // The Vaucanson Group consists of people listed in the `AUTHORS' file.
00016 //
00017 #ifndef VCSN_ALGEBRA_CONCEPT_FREEMONOID_PRODUCT_BASE_HXX
00018 # define VCSN_ALGEBRA_CONCEPT_FREEMONOID_PRODUCT_BASE_HXX
00019 
00020 # include <vaucanson/algebra/concept/freemonoid_product_base.hh>
00021 
00022 namespace vcsn {
00023 
00024   namespace algebra {
00025 
00026     /*----------------------------.
00027     | FreeMonoidProductBase<Self> |
00028     `----------------------------*/
00029 
00030     template <class Self>
00031     typename FreeMonoidProductBase<Self>::first_monoid_t&
00032     FreeMonoidProductBase<Self>::first_monoid()
00033     {
00034       return this->self().first_monoid();
00035     }
00036 
00037     template <class Self>
00038     const typename FreeMonoidProductBase<Self>::first_monoid_t&
00039     FreeMonoidProductBase<Self>::first_monoid() const
00040     {
00041       return this->self().first_monoid();
00042     }
00043 
00044     template <class Self>
00045     typename FreeMonoidProductBase<Self>::second_monoid_t&
00046     FreeMonoidProductBase<Self>::second_monoid()
00047     {
00048       return this->self().second_monoid();
00049     }
00050 
00051     template <class Self>
00052     const typename FreeMonoidProductBase<Self>::second_monoid_t&
00053     FreeMonoidProductBase<Self>::second_monoid() const
00054     {
00055       return this->self().second_monoid();
00056     }
00057 
00058     template <class Self>
00059     FreeMonoidProductBase<Self>::FreeMonoidProductBase()
00060     {}
00061 
00062     template <class Self>
00063     FreeMonoidProductBase<Self>::
00064     FreeMonoidProductBase(const FreeMonoidProductBase& m) :
00065       MonoidBase<Self>(m)
00066     {}
00067 
00068   } // algebra
00069 
00070   /*--------------------------------------------.
00071   | MetaElement<FreeMonoidProductBase<Self>, T> |
00072   `--------------------------------------------*/
00073   template <class Self, typename T>
00074   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::MetaElement() :
00075     MetaElement<algebra::MonoidBase<Self>, T>()
00076   {}
00077 
00078   template <class Self, typename T>
00079   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::
00080   MetaElement(const MetaElement& o)  :
00081     MetaElement<algebra::MonoidBase<Self>, T>(o)
00082   {}
00083 
00084   template <class Self, typename T>
00085   typename
00086   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::first_monoid_elt_t&
00087   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::first()
00088   {
00089     return op_first(this->structure(), this->value());
00090   }
00091 
00092   template <class Self, typename T>
00093   const
00094   typename
00095   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::first_monoid_elt_t&
00096   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::first() const
00097   {
00098     return op_first(this->structure(), this->value());
00099   }
00100 
00101   template <class Self, typename T>
00102   typename
00103   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::second_monoid_elt_t&
00104   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::second()
00105   {
00106     return op_second(this->structure(), this->value());
00107   }
00108 
00109   template <class Self, typename T>
00110   const
00111   typename
00112   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::second_monoid_elt_t&
00113   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::second() const
00114   {
00115     return op_second(this->structure(), this->value());
00116   }
00117 
00118   template <class Self, typename T>
00119   void
00120   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::mirror()
00121   {
00122     op_in_mirror(this->structure(), this->value());
00123   }
00124 
00125   template <class Self, typename T>
00126   template <class Ftor>
00127   typename Ftor::result_type
00128   MetaElement<algebra::FreeMonoidProductBase<Self>, T>::length(Ftor f)
00129   {
00130     return op_length(this->structure(), this->value(), f);
00131   }
00132 
00133 } // vcsn
00134 
00135 #endif // ! VCSN_ALGEBRA_CONCEPT_FREEMONOID_PRODUCT_BASE_HXX

Generated on Sun Jul 29 19:35:19 2007 for Vaucanson by  doxygen 1.5.2