Vaucanson 1.4
|
00001 // generalized.hxx: this file is part of the Vaucanson project. 00002 // 00003 // Vaucanson, a generic library for finite state machines. 00004 // 00005 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007 The Vaucanson Group. 00006 // 00007 // This program is free software; you can redistribute it and/or 00008 // modify it under the terms of the GNU General Public License 00009 // as published by the Free Software Foundation; either version 2 00010 // of the License, or (at your option) any later version. 00011 // 00012 // The complete GNU General Public Licence Notice can be found as the 00013 // `COPYING' file in the root directory. 00014 // 00015 // The Vaucanson Group consists of people listed in the `AUTHORS' file. 00016 // 00017 #ifndef VCSN_ALGEBRA_IMPLEMENTATION_SERIES_GENERALIZED_HXX 00018 # define VCSN_ALGEBRA_IMPLEMENTATION_SERIES_GENERALIZED_HXX 00019 00020 # include <vaucanson/misc/selectors.hh> 00021 # include <vaucanson/algebra/concept/series_base.hh> 00022 # include <vaucanson/algebra/implementation/series/polynoms.hh> 00023 # include <vaucanson/algebra/implementation/series/krat.hh> 00024 00025 namespace vcsn { 00026 00027 namespace algebra { 00028 00029 /*----------------------. 00030 | Generalized converter | 00031 `----------------------*/ 00032 template<typename W, typename M, typename Tm, typename Tw> 00033 rat::exp<Tm, Tw> op_convert(const algebra::Series<W, M>& s1, 00034 SELECTOR2(rat::exp<Tm, Tw>), 00035 const algebra::Series<W, M>& s2, 00036 const algebra::polynom<Tm, Tw>& p_value) 00037 { 00038 precondition(& s1 == & s2); 00039 00040 typedef rat::exp<Tm, Tw> kexp_t; 00041 kexp_t exp; 00042 00043 if (p_value == identity_value(SELECT2(algebra::Series<W, M>), 00044 SELECT2(algebra::polynom<Tm, Tw>))) 00045 return kexp_t::one(); 00046 00047 if (p_value == zero_value(SELECT2(algebra::Series<W, M>), 00048 SELECT2(algebra::polynom<Tm, Tw>))) 00049 return kexp_t::zero(); 00050 00051 for (typename algebra::polynom<Tm, Tw>::const_iterator p = p_value.begin(); 00052 p != p_value.end(); 00053 ++p) 00054 if (exp == kexp_t::zero()) 00055 exp = (*p).second * kexp_t::constant((*p).first); 00056 else 00057 exp += (*p).second * kexp_t::constant((*p).first); 00058 return exp; 00059 } 00060 00061 } // algebra 00062 00063 } // vcsn 00064 00065 #endif // ! VCSN_ALGEBRA_IMPLEMENTATION_SERIES_GENERALIZED_HXX