Vaucanson 1.4
krat_exp_pattern.hxx
00001 // krat_exp_pattern.hxx: this file is part of the Vaucanson project.
00002 //
00003 // Vaucanson, a generic library for finite state machines.
00004 //
00005 // Copyright (C) 2001, 2002, 2003, 2004, 2005 The Vaucanson Group.
00006 //
00007 // This program is free software; you can redistribute it and/or
00008 // modify it under the terms of the GNU General Public License
00009 // as published by the Free Software Foundation; either version 2
00010 // of the License, or (at your option) any later version.
00011 //
00012 // The complete GNU General Public Licence Notice can be found as the
00013 // `COPYING' file in the root directory.
00014 //
00015 // The Vaucanson Group consists of people listed in the `AUTHORS' file.
00016 //
00017 #ifndef VCSN_ALGEBRA_IMPLEMENTATION_SERIES_KRAT_EXP_PATTERN_HXX
00018 # define VCSN_ALGEBRA_IMPLEMENTATION_SERIES_KRAT_EXP_PATTERN_HXX
00019 
00020 # include <vaucanson/algebra/implementation/series/krat_exp_pattern.hh>
00021 
00022 namespace vcsn {
00023 
00024   namespace algebra {
00025 
00026     template <class T, class U>
00027     BinaryOp<T, U>::BinaryOp()
00028     {}
00029 
00030     template <class T, class U>
00031     BinaryOp<T, U>::BinaryOp(const BinaryOp& b) :
00032       lhs_(b.lhs_),
00033       rhs_(b.rhs_)
00034     {}
00035 
00036     template <class T, class U>
00037     BinaryOp<T, U>::BinaryOp(const T& lhs, const U& rhs) :
00038       lhs_(lhs),
00039       rhs_(rhs)
00040     {}
00041 
00042     template <class T, class U>
00043     T&
00044     BinaryOp<T, U>::lhs()
00045     {
00046       return lhs_;
00047     }
00048 
00049     template <class T, class U>
00050     const T&
00051     BinaryOp<T, U>::lhs() const
00052     {
00053       return lhs_;
00054     }
00055 
00056     template <class T, class U>
00057     U&
00058     BinaryOp<T, U>::rhs()
00059     {
00060       return rhs_;
00061     }
00062 
00063     template <class T, class U>
00064     const U&
00065     BinaryOp<T, U>::rhs() const
00066     {
00067       return rhs_;
00068     }
00069 
00070     template <class T>
00071     UnaryOp<T>::UnaryOp()
00072     {}
00073 
00074     template <class T>
00075     UnaryOp<T>::UnaryOp(const UnaryOp& b) :
00076       node_(b.node_)
00077     {}
00078 
00079     template <class T>
00080     UnaryOp<T>::UnaryOp(const T& node) :
00081       node_(node)
00082     {}
00083 
00084     template <class T>
00085     T&
00086     UnaryOp<T>::value()
00087     {
00088       return node_;
00089     }
00090 
00091     template <class T>
00092     const T&
00093     UnaryOp<T>::value() const
00094     {
00095       return node_;
00096     }
00097 
00098     template <class T>
00099     Value<T>::Value()
00100     {}
00101 
00102     template <class T>
00103     Value<T>::Value(const Value& v) :
00104       v_ (v.v_)
00105     {}
00106 
00107     template <class T>
00108     Value<T>::Value(const T& v) :
00109       v_(v)
00110     {}
00111 
00112     template <class T>
00113     T&
00114     Value<T>::value()
00115     {
00116       return v_;
00117     }
00118 
00119     template <class T>
00120     const T&
00121     Value<T>::value() const
00122     {
00123       return v_;
00124     }
00125 
00126     template <class Self, class T, class U, class F>
00127     U
00128     GenericMatcher<Self, T, U, F>::match(const T& ast)
00129     {
00130       return F::d(*static_cast<Self*>(this), ast);
00131     }
00132 
00133     template <class Self, class T, class U, class F>
00134     GenericMatcher<Self, T, U, F>::GenericMatcher()
00135     {}
00136 
00137   } // algebra
00138 
00139 } // vcsn
00140 
00141 #endif // ! VCSN_ALGEBRA_IMPLEMENTATION_SERIES_KRAT_EXP_PATTERN_HXX