ratexp.derivation(label,breaking=False)

Compute the derivation of a weighted expression.

Arguments:

  • label: the (non empty) string to derive the expression with.
  • breaking: whether to split the result.

See also:

References:

Examples

The following function will prove handy: it takes a rational expression and a list of strings, and returns a $\LaTeX$ aligned environment to display nicely the result.

In [1]:
import vcsn
def diffs(r, ss):
    from IPython.display import Latex
    eqs = []
    for s in ss:
        eqs.append(r'\frac{{\partial}}{{\partial {0}}} {1}& = {2}'
                   .format(s,
                           r.format('latex'),
                           r.derivation(s).format('latex')))
    return Latex(r'''\begin{{aligned}}
        {0}
    \end{{aligned}}'''.format(r'\\'.join(eqs)))

Classical expressions

In the classical case (labels are letters, and weights are Boolean), this is the construct as described by Antimirov.

In [2]:
b = vcsn.context('lal_char(ab), b')
r = b.ratexp('[ab]{3}')
r.derivation('a')
Out[2]:
$\left(a + b\right) \, \left(a + b\right)$

Or, using the diffs function we defined above:

In [3]:
diffs(r, ['a', 'aa', 'aaa', 'aaaa'])
Out[3]:
\begin{aligned} \frac{\partial}{\partial a} \left(a + b\right) \, \left(a + b\right) \, \left(a + b\right)& = \left(a + b\right) \, \left(a + b\right)\\\frac{\partial}{\partial aa} \left(a + b\right) \, \left(a + b\right) \, \left(a + b\right)& = a + b\\\frac{\partial}{\partial aaa} \left(a + b\right) \, \left(a + b\right) \, \left(a + b\right)& = \varepsilon\\\frac{\partial}{\partial aaaa} \left(a + b\right) \, \left(a + b\right) \, \left(a + b\right)& = \emptyset \end{aligned}

Weighted Expressions

Of course, expressions can be weighted.

In [4]:
q = vcsn.context('lal_char(abc), q')
r = q.ratexp('(<1/6>a*+<1/3>b*)*')
diffs(r, ['a', 'aa', 'ab', 'b', 'ba', 'bb'])
Out[4]:
\begin{aligned} \frac{\partial}{\partial a} \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}& = \left\langle \frac{1}{3}\right\rangle {a}^{*} \, \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}\\\frac{\partial}{\partial aa} \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}& = \left\langle \frac{4}{9}\right\rangle {a}^{*} \, \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}\\\frac{\partial}{\partial ab} \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}& = \left\langle \frac{2}{9}\right\rangle {b}^{*} \, \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}\\\frac{\partial}{\partial b} \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}& = \left\langle \frac{2}{3}\right\rangle {b}^{*} \, \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}\\\frac{\partial}{\partial ba} \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}& = \left\langle \frac{2}{9}\right\rangle {a}^{*} \, \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}\\\frac{\partial}{\partial bb} \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*}& = \left\langle \frac{10}{9}\right\rangle {b}^{*} \, \left( \left\langle \frac{1}{6} \right\rangle \,{a}^{*} + \left\langle \frac{1}{3} \right\rangle \,{b}^{*}\right)^{*} \end{aligned}

And this is tightly connected with the construction of the derived-term automaton.

In [5]:
r.derived_term()
Out[5]:
%3 I0 0 (⟨1/6⟩a*+⟨1/3⟩b*)* I0->0 F0 F1 F2 0->F0 ⟨2⟩ 1 a*(⟨1/6⟩a*+⟨1/3⟩b*)* 0->1 ⟨1/3⟩a 2 b*(⟨1/6⟩a*+⟨1/3⟩b*)* 0->2 ⟨2/3⟩b 1->F1 ⟨2⟩ 1->1 ⟨4/3⟩a 1->2 ⟨2/3⟩b 2->F2 ⟨2⟩ 2->1 ⟨1/3⟩a 2->2 ⟨5/3⟩b

Breaking derivation

The "breaking" derivation "splits" the polynomial at the end.

In [6]:
r = q.ratexp('[ab](<2>[ab])')
r.derivation('a')
Out[6]:
$ \left\langle 2 \right\rangle \,\left(a + b\right)$
In [7]:
r.derivation('a', True)
Out[7]:
$\left\langle 2\right\rangle a \oplus \left\langle 2\right\rangle b$
In [8]:
r.derivation('a').split()
Out[8]:
$\left\langle 2\right\rangle a \oplus \left\langle 2\right\rangle b$

Again, this is tightly connected with both flavors of the derived-term automaton.

In [9]:
r.derived_term()
Out[9]:
%3 I0 0 (a+b)⟨2⟩(a+b) I0->0 F2 1 ⟨2⟩(a+b) 0->1 a, b 2 ε 1->2 ⟨2⟩a, ⟨2⟩b 2->F2
In [10]:
r.derived_term('breaking_derivation')
Out[10]:
%3 I0 0 a⟨2⟩(a+b) I0->0 I1 1 b⟨2⟩(a+b) I1->1 F4 2 a 0->2 ⟨2⟩a 3 b 0->3 ⟨2⟩a 1->2 ⟨2⟩b 1->3 ⟨2⟩b 4 ε 2->4 a 3->4 b 4->F4