Create the conjugate of an automaton. The conjugate of $\mathcal{A}$ is defined as the automaton recognizing the language $\{vu \mid u, v \in \Sigma^*\text{ and }uv\text{ recognized by }\mathcal{A}\}$.
Preconditions:
Postconditions:
import vcsn
ctx = vcsn.context('lan_char, b')
a = ctx.expression('ab*').automaton()
a
a.shortest(10)
conj = a.conjugate()
conj
conj.shortest(10)