expansion.conjunction(xpn)

Create an expansion which denotes the conjunction of both denoted series.

Preconditions:

  • None

See also:

References:

Examples

In [1]:
import vcsn
def xpn(e):
    return vcsn.Q.expression(e).expansion()
a = xpn('<2>a*b')
a
Out[1]:
$a \odot \left[\left\langle 2\right\rangle {a}^{*} \, b\right] \oplus b \odot \left[\left\langle 2\right\rangle \varepsilon\right]$
In [2]:
b = xpn('<3>ab*')
b
Out[2]:
$a \odot \left[\left\langle 3\right\rangle {b}^{*}\right]$
In [3]:
a & b
Out[3]:
$a \odot \left[\left\langle 6\right\rangle {a}^{*} \, b \& {b}^{*}\right]$
In [4]:
vcsn.Q.expression('<2>a*b & <3>ab*').derived_term()
Out[4]:
%3 I0 0 ⟨2⟩(a*b)&⟨3⟩(ab*) I0->0 F2 1 a*b&b* 0->1 ⟨6⟩a 2 ε&b* 1->2 b 2->F2