UP | HOME

DSTAR2TGBA

Table of Contents

NAME

dstar2tgba − convert automata into Büchi automata

SYNOPSIS

dstar2tgba [OPTION...] [FILENAMES...]

DESCRIPTION

Convert automata with any acceptance condition into variants of Büchi automata.

This reads automata into any supported format (HOA, LBTT, ltl2dstar, never claim) and outputs a Transition−based Generalized Büchi Automata in GraphViz’s format by default. Each supplied file may contain multiple automata.

Input:

−F, −−file=FILENAME

process the automaton in FILENAME

−−trust−hoa=BOOL

If False, properties listed in HOA files are ignored, unless they can be easily verified. If True (the default) any supported property is trusted.

Output automaton type:

−B, −−ba

Büchi Automaton (implies −S)

−C, −−complete

output a complete automaton

−G, −−generic

any acceptance condition is allowed

−M, −−monitor

Monitor (accepts all finite prefixes of the given property)

−S, −−state−based−acceptance, −−sbacc

define the acceptance using states

−−tgba

Transition−based Generalized Büchi Automaton (default)

Output format:

−8, −−utf8

enable UTF−8 characters in output (ignored with −−lbtt or −−spin)

−−check[=PROP]

test for the additional property PROP and output the result in the HOA format (implies −H). PROP may be any prefix of ’all’ (default), ’unambiguous’, ’stutter−invariant’, or ’strength’.

−d,
−−dot
[=1|a|b|B|c|C(COLOR)|e|f(FONT)|h|k|n|N|o|r|R|s|t|v|+INT|<INT|#]

GraphViz’s format. Add letters for (1) force numbered states, (a) acceptance display, (b) acceptance sets as bullets, (B) bullets except for Büchi/co−Büchi automata, (c) force circular nodes, (C) color nodes with COLOR, (e) force elliptic nodes, (f(FONT)) use FONT, (h) horizontal layout, (k) use state labels when possible, (n) with name, (N) without name, (o) ordered transitions, (r) rainbow colors for acceptance sets, (R) color acceptance sets by Inf/Fin, (s) with SCCs, (t) force transition−based acceptance, (v) vertical layout, (+INT) add INT to all set numbers, (<INT) display at most INT states, (#) show internal edge numbers

−H, −−hoaf[=i|k|l|m|s|t|v] Output the automaton in HOA format
(default).

Add letters to select (i) use implicit labels for complete deterministic automata, (s) prefer state−based acceptance when possible [default], (t) force transition−based acceptance, (m) mix state and transition−based acceptance, (k) use state labels when possible, (l) single−line output, (v) verbose properties

−−lbtt[=t]

LBTT’s format (add =t to force transition−based acceptance even on Büchi automata)

−−name=FORMAT

set the name of the output automaton

−o, −−output=FORMAT

send output to a file named FORMAT instead of standard output. The first automaton sent to a file truncates it unless FORMAT starts with ’>>’.

−q, −−quiet

suppress all normal output

−s, −−spin[=6|c]

Spin neverclaim (implies −−ba). Add letters to select (6) Spin’s 6.2.4 style, (c) comments on states

−−stats=FORMAT

output statistics about the automaton

Any FORMAT string may use the following interpreted sequences (capitals for input, minuscules for output):

%%

a single %

%A, %a

number of acceptance sets

%C, %c

number of SCCs

%d

1 if the output is deterministic, 0 otherwise

%E, %e

number of edges

%F

name of the input file

%G, %g

acceptance condition (in HOA syntax)

%L

location in the input file

%M, %m

name of the automaton

%n

number of nondeterministic states in output

%p

1 if the output is complete, 0 otherwise

%r

processing time (excluding parsing) in seconds

%S, %s

number of states

%T, %t

number of transitions

%w

one word accepted by the output automaton

Simplification goal:

−a, −−any

no preference, do not bother making it small or deterministic

−D, −−deterministic

prefer deterministic automata (combine with −−generic to be sure to obtain a deterministic automaton)

−−small

prefer small automata (default)

Simplification level:

−−high

all available optimizations (slow, default)

−−low

minimal optimizations (fast)

−−medium

moderate optimizations

Miscellaneous options:

−x, −−extra−options=OPTS

fine−tuning options (see spot−x (7))

−−help

print this help

−−version

print program version

Mandatory or optional arguments to long options are also mandatory or optional for any corresponding short options.

HISTORY

dstar2tgba was introduced in Spot 1.2 as a command that reads automata in ltl2dstar’s format, and converts them into TGBA. At this time it was the only command-line tool being able to read automata.

In Spot 1.99.1 the autfilt command was introduced, but could only read automata in the HOA format, or in lbtt’s format, or as never claims. So dstar2tgba was still the only way to process automata in ltl2dstar’s format.

In Spot 1.99.4 the parser for ltl2dstar’s format was finally merged with the parser used by autfilt for reading the other format. This implies not only that autfilt can now read ltl2dstar’s format, but also that dstar2tgba can read the other formats as well.

Nowadays, the command

% dstar2tgba some files

can be used as a shorthand for

% autfilt −−tgba −−high −−small some files

The name dstar2tgba is kept for backward compatibility and because it is used in at least one published paper, but naming this tool aut2tgba would make more sense.

BIBLIOGRAPHY

1.

<http://www.ltl2dstar.de/docs/ltl2dstar.html>

Documents the output format of ltl2dstar.

2.

Chistof Löding: Mehods for the Transformation of ω-Automata: Complexity and Connection to Second Order Logic. Diploma Thesis. University of Kiel. 1998.

Describes various tranformations from non-deterministic Rabin and Streett automata to Büchi automata. Slightly optimized variants of these transformations are used by dstar2tgba for the general cases.

3.

Sriram C. Krishnan, Anuj Puri, and Robert K. Brayton: Deterministic ω-automata vis-a-vis Deterministic Büchi Automata. ISAAC’94.

Explains how to preserve the determinism of Rabin and Streett automata when the property can be repreted by a Deterministic automaton. dstar2tgba implements this for the Rabin case only. In other words, translating a deterministic Rabin automaton with dstar2tgba will produce a deterministic TGBA or BA if such a automaton exists.

4.

Souheib Baarir and Alexandre Duret-Lutz: Mechanizing the minimization of deterministic generalized Büchi automata. Proceedings of FORTE’14. LNCS 8461.

Explains the SAT-based minimization techniques that can be used (on request only) by dstar2tgba to minimize deterministic Büchi automata.

5.

Souheib Baarir and Alexandre Duret-Lutz: SAT-based minimization of deterministic ω-automata. Proceedings of LPAR’15 (a.k.a LPAR-20). LNCS 9450.

Extends the previous paper by allowing arbitrary acceptance conditions.

REPORTING BUGS

Report bugs to <spot@lrde.epita.fr>.

COPYRIGHT

Copyright © 2016 Laboratoire de Recherche et Développement de l’Epita. License GPLv3+: GNU GPL version 3 or later.
This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.

SEE ALSO

spot-x(7), autfilt(1)