27 #include <spot/misc/_config.h> 28 #include <spot/misc/bitset.hh> 29 #include <spot/misc/trival.hh> 42 SPOT_DEPRECATED(
"mark_t no longer relies on unsigned, stop using value_t")
43 typedef unsigned value_t;
63 [[noreturn]]
static void report_too_many_sets();
99 template<
class iterator>
101 mark_t(
const iterator& begin,
const iterator& end)
104 for (iterator i = begin; i != end; ++i)
105 if (SPOT_LIKELY(*i < SPOT_MAX_ACCSETS))
108 report_too_many_sets();
112 mark_t(std::initializer_list<unsigned> vals)
113 :
mark_t(vals.begin(), vals.end())
117 SPOT_DEPRECATED(
"use brace initialization instead")
138 return SPOT_MAX_ACCSETS;
148 return mark_t(_value_t::mone());
151 size_t hash()
const noexcept
153 std::hash<decltype(id)> h;
157 SPOT_DEPRECATED(
"compare mark_t to mark_t, not to unsigned")
158 bool operator==(
unsigned o)
const 160 SPOT_ASSERT(o == 0
U);
165 SPOT_DEPRECATED(
"compare mark_t to mark_t, not to unsigned")
166 bool operator!=(
unsigned o)
const 168 SPOT_ASSERT(o == 0
U);
173 bool operator==(
mark_t o)
const 178 bool operator!=(
mark_t o)
const 183 bool operator<(
mark_t o)
const 188 bool operator<=(
mark_t o)
const 193 bool operator>(
mark_t o)
const 198 bool operator>=(
mark_t o)
const 203 explicit operator bool()
const 208 bool has(
unsigned u)
const 210 return !!this->operator&(
mark_t({0}) << u);
218 void clear(
unsigned u)
272 #if SPOT_DEBUG || defined(SWIGPYTHON) 273 # define SPOT_WRAP_OP(ins) \ 278 catch (const std::runtime_error& e) \ 280 report_too_many_sets(); \ 283 # define SPOT_WRAP_OP(ins) ins; 285 mark_t operator<<(
unsigned i)
const 287 SPOT_WRAP_OP(
return id << i);
290 mark_t& operator<<=(
unsigned i)
292 SPOT_WRAP_OP(
id <<= i;
return *
this);
295 mark_t operator>>(
unsigned i)
const 297 SPOT_WRAP_OP(
return id >> i);
300 mark_t& operator>>=(
unsigned i)
302 SPOT_WRAP_OP(
id >>= i;
return *
this);
320 auto rm = (~yv) & (yv - 1);
322 auto lm = ~(yv ^ (yv - 1));
323 xv = ((xv & lm) >> 1) | (xv & rm);
333 return !((*this) - m);
340 return *
this != m && this->subset(m);
356 return id.highest()+1;
368 return id.lowest()+1;
393 template<
class iterator>
411 friend std::ostream& operator<<(std::ostream& os,
mark_t m);
413 std::string as_string()
const 415 std::ostringstream os;
423 { Inf, Fin, InfNeg, FinNeg,
And,
Or };
454 struct SPOT_API
acc_code:
public std::vector<acc_word>
456 bool operator==(
const acc_code& other)
const 458 unsigned pos = size();
459 if (other.size() != pos)
463 auto op = (*this)[pos - 1].sub.op;
464 auto sz = (*this)[pos - 1].sub.size;
465 if (other[pos - 1].sub.op !=
op ||
466 other[pos - 1].sub.size != sz)
470 case acc_cond::acc_op::And:
471 case acc_cond::acc_op::Or:
474 case acc_cond::acc_op::Inf:
475 case acc_cond::acc_op::InfNeg:
476 case acc_cond::acc_op::Fin:
477 case acc_cond::acc_op::FinNeg:
479 if (other[pos].mark != (*
this)[pos].mark)
487 bool operator<(
const acc_code& other)
const 489 unsigned pos = size();
490 auto osize = other.size();
497 auto op = (*this)[pos - 1].sub.op;
498 auto oop = other[pos - 1].sub.op;
503 auto sz = (*this)[pos - 1].sub.size;
504 auto osz = other[pos - 1].sub.size;
511 case acc_cond::acc_op::And:
512 case acc_cond::acc_op::Or:
515 case acc_cond::acc_op::Inf:
516 case acc_cond::acc_op::InfNeg:
517 case acc_cond::acc_op::Fin:
518 case acc_cond::acc_op::FinNeg:
521 auto m = (*this)[pos].mark;
522 auto om = other[pos].mark;
534 bool operator>(
const acc_code& other)
const 536 return other < *
this;
539 bool operator<=(
const acc_code& other)
const 541 return !(other < *
this);
544 bool operator>=(
const acc_code& other)
const 546 return !(*
this < other);
549 bool operator!=(
const acc_code& other)
const 551 return !(*
this == other);
562 return s == 0 || ((*this)[s - 1].sub.op == acc_op::Inf
563 && !((*this)[s - 2].mark));
577 && (*this)[s - 1].sub.op == acc_op::Fin && !((*this)[s - 2].mark);
591 res[1].sub.op = acc_op::Fin;
617 res[1].sub.op = acc_op::Fin;
649 res[1].sub.op = acc_op::FinNeg;
656 return fin_neg(
mark_t(vals));
673 res[1].sub.op = acc_op::Inf;
705 res[1].sub.op = acc_op::InfNeg;
712 return inf_neg(
mark_t(vals));
742 m >>= mark_t::max_accsets() - n;
756 m >>= mark_t::max_accsets() - n;
769 res |= inf({2*n - 1}) & fin({2*n - 2});
784 res &= inf({2*n - 1}) | fin({2*n - 2});
802 template<
class Iterator>
807 for (Iterator i = begin; i != end; ++i)
811 for (
unsigned ni = *i; ni > 0; --ni)
813 auto pair = inf(m) & fin({f});
814 std::swap(pair, res);
815 res |= std::move(pair);
826 static acc_code parity(
bool max,
bool odd,
unsigned sets);
844 static acc_code random(
unsigned n,
double reuse = 0.0);
849 if (is_t() || r.
is_f())
854 if (is_f() || r.
is_t())
856 unsigned s = size() - 1;
857 unsigned rs = r.size() - 1;
860 if (((*
this)[s].sub.op == acc_op::Inf
861 && r[rs].sub.op == acc_op::Inf)
862 || ((*
this)[s].sub.op == acc_op::InfNeg
863 && r[rs].sub.op == acc_op::InfNeg))
865 (*this)[s - 1].mark |= r[rs - 1].mark;
877 auto start = &(*this)[s] - (*this)[s].sub.size;
878 auto pos = &(*this)[s] - 1;
882 if (pos->sub.op == acc_op::Inf)
887 pos -= pos->sub.size + 1;
890 else if ((*
this)[s].sub.op == acc_op::Inf)
892 left_inf = &(*this)[s - 1];
895 const acc_word* right_inf =
nullptr;
896 auto right_end = &r.back();
900 auto pos = --right_end;
903 if (pos->sub.op == acc_op::Inf)
908 pos -= pos->sub.size + 1;
911 else if (right_end->sub.op == acc_op::Inf)
913 right_inf = right_end - 1;
917 if (left_inf && right_inf)
919 carry = left_inf->mark;
920 auto pos = left_inf - &(*this)[0];
921 erase(begin() + pos, begin() + pos + 2);
924 insert(end(), &r[0], right_end + 1);
926 (*this)[sz + (right_inf - &r[0])].mark |= carry;
954 if (is_t() || r.
is_f())
956 if (is_f() || r.
is_t())
961 unsigned s = size() - 1;
962 unsigned rs = r.size() - 1;
964 if (((*
this)[s].sub.op == acc_op::Fin
965 && r[rs].sub.op == acc_op::Fin)
966 || ((*
this)[s].sub.op == acc_op::FinNeg
967 && r[rs].sub.op == acc_op::FinNeg))
969 (*this)[s - 1].mark |= r[rs - 1].mark;
981 auto start = &(*this)[s] - (*this)[s].sub.size;
982 auto pos = &(*this)[s] - 1;
986 if (pos->sub.op == acc_op::Fin)
991 pos -= pos->sub.size + 1;
994 else if ((*
this)[s].sub.op == acc_op::Fin)
996 left_fin = &(*this)[s - 1];
999 const acc_word* right_fin =
nullptr;
1000 auto right_end = &r.back();
1004 auto pos = --right_end;
1007 if (pos->sub.op == acc_op::Fin)
1009 right_fin = pos - 1;
1012 pos -= pos->sub.size + 1;
1015 else if (right_end->sub.op == acc_op::Fin)
1017 right_fin = right_end - 1;
1021 if (left_fin && right_fin)
1023 carry = left_fin->mark;
1024 auto pos = (left_fin - &(*this)[0]);
1025 this->erase(begin() + pos, begin() + pos + 2);
1028 insert(end(), &r[0], right_end + 1);
1030 (*this)[sz + (right_fin - &r[0])].mark |= carry;
1033 w.sub.size = size();
1061 if (SPOT_UNLIKELY(sets >= mark_t::max_accsets()))
1062 report_too_many_sets();
1065 unsigned pos = size();
1068 switch ((*
this)[pos - 1].sub.op)
1070 case acc_cond::acc_op::And:
1071 case acc_cond::acc_op::Or:
1074 case acc_cond::acc_op::Inf:
1075 case acc_cond::acc_op::InfNeg:
1076 case acc_cond::acc_op::Fin:
1077 case acc_cond::acc_op::FinNeg:
1079 (*this)[pos].mark <<= sets;
1103 bool is_dnf()
const;
1111 bool is_cnf()
const;
1142 std::vector<acc_code> top_disjuncts()
const;
1152 std::vector<acc_code> top_conjuncts()
const;
1183 int fin_one()
const;
1197 std::vector<std::vector<int>>
1198 missing(
mark_t inf,
bool accepting)
const;
1202 bool accepting(
mark_t inf)
const;
1209 bool inf_satisfiable(
mark_t inf)
const;
1223 mark_t always_present)
const;
1235 std::vector<unsigned> symmetries()
const;
1264 std::pair<acc_cond::mark_t, acc_cond::mark_t> used_inf_fin_sets()
const;
1271 to_html(std::ostream& os,
1272 std::function<
void(std::ostream&,
int)>
1273 set_printer =
nullptr)
const;
1280 to_text(std::ostream& os,
1281 std::function<
void(std::ostream&,
int)>
1282 set_printer =
nullptr)
const;
1289 to_latex(std::ostream& os,
1290 std::function<
void(std::ostream&,
int)>
1291 set_printer =
nullptr)
const;
1326 :
std::vector<
acc_word>(other - other->sub.size, other + 1)
1332 friend std::ostream& operator<<(std::ostream& os,
const acc_code& code);
1343 : num_(0
U), all_({}), code_(code)
1346 uses_fin_acceptance_ = check_fin_acceptance();
1354 : num_(0
U), all_({}), code_(code)
1356 add_sets(code.used_sets().max_set());
1357 uses_fin_acceptance_ = check_fin_acceptance();
1362 : num_(o.num_), all_(o.all_), code_(o.code_),
1363 uses_fin_acceptance_(o.uses_fin_acceptance_)
1373 uses_fin_acceptance_ = o.uses_fin_acceptance_;
1387 uses_fin_acceptance_ = check_fin_acceptance();
1402 bool operator==(
const acc_cond& other)
const 1407 bool operator!=(
const acc_cond& other)
const 1409 return !(*
this == other);
1415 return uses_fin_acceptance_;
1421 return code_.is_t();
1430 return num_ == 0 && is_t();
1436 return code_.is_f();
1445 return num_ == 0 && is_f();
1454 unsigned s = code_.size();
1456 s == 2 && code_[1].sub.op == acc_op::Inf && code_[0].mark == all_sets();
1465 return num_ == 1 && is_generalized_co_buchi();
1472 set_acceptance(inf(all_sets()));
1479 set_acceptance(fin(all_sets()));
1488 unsigned s = code_.size();
1489 return (s == 0 && num_ == 0) || (s == 2 && code_[1].sub.op == acc_op::Inf
1490 && code_[0].mark == all_sets());
1499 unsigned s = code_.size();
1501 code_[1].sub.op == acc_op::Fin && code_[0].mark == all_sets());
1515 int is_rabin()
const;
1528 int is_streett()
const;
1553 bool operator==(
rs_pair o)
const 1555 return fin == o.fin && inf == o.inf;
1557 bool operator!=(
rs_pair o)
const 1559 return fin != o.fin || inf != o.inf;
1561 bool operator<(
rs_pair o)
const 1563 return fin < o.fin || (!(o.fin < fin) && inf < o.inf);
1565 bool operator<=(
rs_pair o)
const 1567 return !(o < *
this);
1569 bool operator>(
rs_pair o)
const 1573 bool operator>=(
rs_pair o)
const 1575 return !(*
this < o);
1588 bool is_streett_like(std::vector<rs_pair>& pairs)
const;
1600 bool is_rabin_like(std::vector<rs_pair>& pairs)
const;
1611 bool is_generalized_rabin(std::vector<unsigned>& pairs)
const;
1625 bool is_generalized_streett(std::vector<unsigned>& pairs)
const;
1636 bool is_parity(
bool& max,
bool& odd,
bool equiv =
false)
const;
1644 return is_parity(max, odd);
1650 std::pair<bool, acc_cond::mark_t> unsat_mark()
const 1652 return sat_unsat_mark(
false);
1657 std::pair<bool, acc_cond::mark_t> sat_mark()
const 1659 return sat_unsat_mark(
true);
1663 bool check_fin_acceptance()
const;
1664 std::pair<bool, acc_cond::mark_t> sat_unsat_mark(
bool)
const;
1677 return acc_code::inf(mark);
1682 return inf(
mark_t(vals.begin(), vals.end()));
1704 return acc_code::inf_neg(mark);
1709 return inf_neg(
mark_t(vals.begin(), vals.end()));
1722 return acc_code::fin(mark);
1727 return fin(
mark_t(vals.begin(), vals.end()));
1749 return acc_code::fin_neg(mark);
1754 return fin_neg(
mark_t(vals.begin(), vals.end()));
1768 if (num > mark_t::max_accsets())
1769 report_too_many_sets();
1788 SPOT_ASSERT(u < num_sets());
1811 return code_.accepting(inf);
1821 return code_.inf_satisfiable(inf);
1837 return code_.maybe_accepting(infinitely_often, always_present);
1856 SPOT_DEPRECATED(
"Use operator<< instead.")
1857 std::ostream& format(std::ostream& os,
mark_t m)
const 1865 SPOT_DEPRECATED(
"Use operator<< or mark_t::as_string() instead.")
1866 std::string format(
mark_t m)
const 1868 std::ostringstream os;
1887 template<
class iterator>
1891 for (
unsigned x = 0; x < num_; ++x)
1896 auto all = comp(u |
mark_t({x}));
1899 for (iterator y = begin; y != end; ++y)
1929 return {num_sets(), code_.
remove(rem, missing)};
1939 { num_sets() - (all_sets() & rem).count(), code_.
strip(rem, missing) };
1945 return {num_sets(), code_.
force_inf(m)};
1952 return {num_sets(), code_.
remove(all_sets() - rem,
true)};
1966 std::string name(
const char* fmt =
"alo")
const;
1981 return code_.fin_unit();
1990 return code_.fin_one();
2001 std::vector<acc_cond> top_disjuncts()
const;
2011 std::vector<acc_cond> top_conjuncts()
const;
2022 bool uses_fin_acceptance_ =
false;
2027 typedef std::vector<acc_cond::rs_pair> rs_pairs;
2031 : pairs_(p), view_marks_(m) {}
2057 return !visible(p.inf) && visible(p.fin) ? p.fin
2066 return !visible(p.fin) && visible(p.inf) ? p.inf
2074 for (
const auto& p: pairs_)
2075 if (p.fin.has(mark) && visible(p.fin) && visible(p.inf))
2080 const rs_pairs& pairs()
const 2086 template<
typename filter>
2090 for (
const auto& p: pairs_)
2097 return !!(view_marks_ & v);
2100 const rs_pairs& pairs_;
2106 std::ostream& operator<<(std::ostream& os,
const acc_cond& acc);
2115 typedef unsigned value_type;
2116 typedef const value_type& reference;
2117 typedef const value_type* pointer;
2118 typedef std::ptrdiff_t difference_type;
2119 typedef std::forward_iterator_tag iterator_category;
2141 value_type operator*()
const 2144 return m_.min_set() - 1;
2149 m_.clear(this->
operator*());
2193 struct hash<
spot::acc_cond::mark_t>
static acc_code inf(mark_t m)
Construct a generalized Büchi acceptance.
Definition: acc.hh:668
static constexpr unsigned max_accsets()
The maximum number of acceptance sets supported by this implementation.
Definition: acc.hh:136
Definition: automata.hh:26
unsigned min_set() const
The number of the lowest set used plus one.
Definition: acc.hh:365
mark_t lowest() const
A mark_t where all bits have been removed except the lowest one.
Definition: acc.hh:377
bool is_all() const
Whether the acceptance condition is "all".
Definition: acc.hh:1428
mark_t all_sets() const
Construct a mark_t with all declared sets.
Definition: acc.hh:1802
spot::internal::mark_container sets() const
Returns some iterable object that contains the used sets.
Definition: acc.hh:2184
static acc_code fin(mark_t mark)
Construct a generalized co-Büchi acceptance.
Definition: acc.hh:1720
acc_cond force_inf(mark_t m) const
For all x in m, replaces Fin(x) by false.
Definition: acc.hh:1943
bool is_f() const
Whether the acceptance formula is "f" (false)
Definition: acc.hh:1434
bool is_f() const
Is this the "false" acceptance condition?
Definition: acc.hh:572
bool inf_satisfiable(mark_t inf) const
Assuming that we will visit at least all sets in inf, is there any chance that we will satisfy the co...
Definition: acc.hh:1819
bool is_buchi() const
Whether the acceptance condition is "Büchi".
Definition: acc.hh:1452
unsigned add_sets(unsigned num)
Add more sets to the acceptance condition.
Definition: acc.hh:1762
acc_op
Operators for acceptance formulas.
Definition: acc.hh:422
static acc_code fin_neg(std::initializer_list< unsigned > vals)
Construct a generalized co-Büchi acceptance for complemented sets.
Definition: acc.hh:1752
mark_t mark(unsigned u) const
Build a mark_t with a single set.
Definition: acc.hh:1786
unsigned max_set() const
The number of the highest set used plus one.
Definition: acc.hh:353
bool uses_fin_acceptance() const
Whether the acceptance condition uses Fin terms.
Definition: acc.hh:1413
Rabin/streett pairs used by is_rabin_like and is_streett_like.
Definition: acc.hh:1539
void fill(iterator here) const
Fill a container with the indices of the bits that are set.
Definition: acc.hh:394
const acc_code & get_acceptance() const
Retrieve the acceptance formula.
Definition: acc.hh:1391
static acc_code f()
Construct the "false" acceptance condition.
Definition: acc.hh:586
static acc_code inf(mark_t mark)
Construct a generalized Büchi acceptance.
Definition: acc.hh:1675
mark_t(const iterator &begin, const iterator &end)
Create a mark_t from a range of set numbers.
Definition: acc.hh:101
Definition: bitset.hh:405
acc_cond restrict_to(mark_t rem) const
Restrict an acceptance condition to a subset of set numbers that are occurring at some point...
Definition: acc.hh:1950
bool subset(mark_t m) const
Whether the set of bits represented by *this is a subset of those represented by m.
Definition: acc.hh:331
static acc_code fin(std::initializer_list< unsigned > vals)
Construct a generalized co-Büchi acceptance.
Definition: acc.hh:1725
static mark_t all()
A mark_t with all bits set to one.
Definition: acc.hh:146
acc_code operator<<(unsigned sets) const
Apply a left shift to all mark_t that appear in the condition.
Definition: acc.hh:1090
static acc_code streett(unsigned n)
Build a Streett condition with n pairs.
Definition: acc.hh:779
bool is_generalized_buchi() const
Whether the acceptance condition is "generalized-Büchi".
Definition: acc.hh:1486
void set_acceptance(const acc_code &code)
Change the acceptance formula.
Definition: acc.hh:1384
bool proper_subset(mark_t m) const
Whether the set of bits represented by *this is a proper subset of those represented by m...
Definition: acc.hh:338
static acc_code fin_neg(mark_t mark)
Construct a generalized co-Büchi acceptance for complemented sets.
Definition: acc.hh:1747
acc_code operator|(acc_code &&r) const
Disjunct the current condition with r.
Definition: acc.hh:1039
acc_code(const acc_word *other)
Copy a part of another acceptance formula.
Definition: acc.hh:1325
static acc_code inf_neg(mark_t mark)
Construct a generalized Büchi acceptance for complemented sets.
Definition: acc.hh:1702
acc_cond remove(mark_t rem, bool missing) const
Remove all the acceptance sets in rem.
Definition: acc.hh:1927
mark_t & remove_some(unsigned n)
Remove n bits that where set.
Definition: acc.hh:385
bool is_none() const
Whether the acceptance condition is "none".
Definition: acc.hh:1443
An acceptance condition.
Definition: acc.hh:58
acc_cond strip(mark_t rem, bool missing) const
Remove acceptance sets, and shift set numbers.
Definition: acc.hh:1936
acc_cond & operator=(const acc_cond &o)
Copy an acceptance condition.
Definition: acc.hh:1368
acc_cond(unsigned n_sets=0, const acc_code &code={})
Build an acceptance condition.
Definition: acc.hh:1342
mark_t(std::initializer_list< unsigned > vals)
Create a mark_t from a list of set numbers.
Definition: acc.hh:112
A "node" in an acceptance formulas.
Definition: acc.hh:432
acc_code & operator|=(const acc_code &r)
Disjunct the current condition in place with r.
Definition: acc.hh:952
static acc_code inf(std::initializer_list< unsigned > vals)
Construct a generalized Büchi acceptance.
Definition: acc.hh:678
void set_generalized_co_buchi()
Change the acceptance condition to generalized-co-Büchi, over all declared sets.
Definition: acc.hh:1477
static acc_code fin(std::initializer_list< unsigned > vals)
Construct a generalized co-Büchi acceptance.
Definition: acc.hh:622
int fin_one() const
Return one acceptance set i that appear as Fin(i) in the condition.
Definition: acc.hh:1988
A class implementing Kleene's three-valued logic.
Definition: trival.hh:33
static acc_code buchi()
Build a Büchi acceptance condition.
Definition: acc.hh:719
static acc_code inf_neg(std::initializer_list< unsigned > vals)
Construct a generalized Büchi acceptance for complemented sets.
Definition: acc.hh:1707
acc_code & get_acceptance()
Retrieve the acceptance formula.
Definition: acc.hh:1397
bool is_co_buchi() const
Whether the acceptance condition is "co-Büchi".
Definition: acc.hh:1463
mark_t comp(const mark_t &l) const
Complement a mark_t.
Definition: acc.hh:1796
static acc_code t()
Construct the "true" acceptance condition.
Definition: acc.hh:600
static acc_code cobuchi()
Build a co-Büchi acceptance condition.
Definition: acc.hh:727
unsigned count() const
Number of bits sets.
Definition: acc.hh:344
static acc_code inf_neg(mark_t m)
Construct a generalized Büchi acceptance for complemented sets.
Definition: acc.hh:700
acc_code()
Build an empty acceptance formula.
Definition: acc.hh:1320
bool is_generalized_co_buchi() const
Whether the acceptance condition is "generalized-co-Büchi".
Definition: acc.hh:1497
mark_t fin_unit() const
Find a Fin(i) that is a unit clause.
Definition: acc.hh:1979
op
Operator types.
Definition: formula.hh:64
bool is_parity() const
check is the acceptance condition matches one of the four type of parity acceptance defined in the HO...
Definition: acc.hh:1640
acc_code & operator<<=(unsigned sets)
Apply a left shift to all mark_t that appear in the condition.
Definition: acc.hh:1059
unsigned num_sets() const
The number of sets used in the acceptance condition.
Definition: acc.hh:1875
static acc_code inf(std::initializer_list< unsigned > vals)
Construct a generalized Büchi acceptance.
Definition: acc.hh:1680
static acc_code generalized_buchi(unsigned n)
Build a generalized-Büchi acceptance condition with n sets.
Definition: acc.hh:737
acc_cond(const acc_cond &o)
Copy an acceptance condition.
Definition: acc.hh:1361
acc_code operator|(const acc_code &r) const
Disjunct the current condition with r.
Definition: acc.hh:1047
static acc_code rabin(unsigned n)
Build a Rabin condition with n pairs.
Definition: acc.hh:764
unsigned add_set()
Add a single set to the acceptance condition.
Definition: acc.hh:1780
An acceptance formula.
Definition: acc.hh:454
static acc_code fin(mark_t m)
Construct a generalized co-Büchi acceptance.
Definition: acc.hh:612
static acc_code generalized_rabin(Iterator begin, Iterator end)
Build a generalized Rabin condition.
Definition: acc.hh:803
mark_t useless(iterator begin, iterator end) const
Compute useless acceptance sets given a list of mark_t that occur in an SCC.
Definition: acc.hh:1888
acc_cond(const acc_code &code)
Build an acceptance condition.
Definition: acc.hh:1353
bool accepting(mark_t inf) const
Check whether visiting exactly all sets inf infinitely often satisfies the acceptance condition...
Definition: acc.hh:1809
bool is_t() const
Whether the acceptance formula is "t" (true)
Definition: acc.hh:1419
trival maybe_accepting(mark_t infinitely_often, mark_t always_present) const
Check potential acceptance of an SCC.
Definition: acc.hh:1835
void set_generalized_buchi()
Change the acceptance condition to generalized-Büchi, over all declared sets.
Definition: acc.hh:1470
static acc_code fin_neg(mark_t m)
Construct a generalized co-Büchi acceptance for complemented sets.
Definition: acc.hh:644
An acceptance mark.
Definition: acc.hh:81
static acc_code inf_neg(std::initializer_list< unsigned > vals)
Construct a generalized Büchi acceptance for complemented sets.
Definition: acc.hh:710
static acc_code fin_neg(std::initializer_list< unsigned > vals)
Construct a generalized co-Büchi acceptance for complemented sets.
Definition: acc.hh:654
static acc_code generalized_co_buchi(unsigned n)
Build a generalized-co-Büchi acceptance condition with n sets.
Definition: acc.hh:751
bool is_t() const
Is this the "true" acceptance condition?
Definition: acc.hh:558