

Reactive Synthesis in a Nutshell

A reactive controller produces output as a reaction to its input

input signals | fylio iollp..—> > 00000000... | output signals
I:{IOJH-“} I_1 I_1 Iy .. —> 0104/0101... 02{007017---}

Reactive Synthesis in a Nutshell

A reactive controller produces output as a reaction to its input

input signals { Iolip iollg...— —> 000000 0. .. } output signals

I:{io,i1,...} 02{00,01,...}

A —> 040401 01...
The reactive synthesis problems

Given a specification relating input signals and output signals over time:
Realizability: decide if a controller exists;
Synthesis: construct it (e.g., as an And-Inverter Graph).

Reactive Synthesis in a Nutshell

A reactive controller produces output as a reaction to its input

input signals iolio io|l...— > 00000000... | output signals
I:{I07I17"'} /_1 I_~| i1 I1_> _>O_1010_10_1... 02{007017"‘}

The reactive synthesis problems

Given a specification relating input signals and output signals over time:
Realizability: decide if a controller exists;
Synthesis: construct it (e.g., as an And-Inverter Graph).

Semantics for an LTL; specification

A_n_y execu[ion of the controller, seen as an infinite word such as
“Iol10004; Inl1000; Inl1 09 O; ...”, must have a finite prefix satisfying the specification.

Text-Book Approach

1. LTL specification ¢

(io VAN GI1) <~ (Oo VAN X!X!O1)

Text-Book Approach

1. LTL, specification ¢

(io VAN GI1) <~ (Oo VAN X!X!O1)

2. Build a DFA A,

Text-Book Approach
1. LTL, specification ¢ 3. Make it a Reachability Game

(i A Gi) < (09 AX'X'0;) ©

(0]
2. Build a DFA A, [< -0
) E4<>i/

Text-Book Approach
1. LTL, specification ¢ 3. Make it a Reachability Game

(io VAN GI1) <~ (Oo VAN X!X!O1)
@ <>/
O

2. Build a DFA A,
zﬁo‘;/

ll 4. Solve it
/

4 N\,
)
S

—
5

/Oo

Text-Book Approach
1. LTL; specification ¢ 3. Make it a Reachability Game

(io VAN GI1) <~ (Oo VAN X!X!O1)
@ <>/
O

2. Build a DFA A,
zﬁoi/

B 4. Solve it
14 . .

T/oo A~T/T ~i/0i ~UT
— OO OO

4 N\,
)
S

Text-Book Approach

1. LTL; specification ¢ 3. Make it a Reachability Game
@ </

O
:é<>°(
a4
) / ' _ : :

/T

/o0 ~NT/T /0
O U/ \T, Jo; O

4 N\,
)
S

Text-Book Approach
1. LTL; specification ¢ 3. Make it a Reachability Game

T/Oo mT/T /'\I'_1/0_1 T/T
/ Ui1/o1

Text-Book Approach
1. LTL; specification ¢ 3. Make it a Reachability Game

Doubly exponential in ||,
independently of |X|

T/oo ~T/T _~i/0
U/ T, /o, O

Text-Book Approach
1. LTL; specification ¢ 3. Make it a Reachability Game

(io VAN GI1) 4 (Oo VAN X!X!O1)
2. Build a DFA A,

Doubly exponential in ||,
independently of |X|

We also have an

/‘\'\ .
#' alphabet explosion problem, K g lete atiee) |5 AIADL L e
with ¥ = 27V¢

T/00 —~T/T /'\I'_1/0_1 T
U/ T, /o, O

3/17

Stopping the DFA Construction on Final States

The goal is to reach final states: we do not care about what follows.

Stopping the DFA Construction on Final States

The goal is to reach final states: we do not care about what follows.

Fighting Alphabet Explosion with MTBDDs

Semi-symbolic representation: MTBDD

Explicit representation

Fighting Alphabet Explosion with MTBDDs

Semi-symbolic representation: MTBDD

Explicit representation

MTBDD representing

(o)
v
/.\ outgoing edges of @

00 o (unique for a given
ﬁ* ‘ variable order)

-~
true BDD node
as accepting sink

Fighting Alphabet Explosion with MTBDDs

Semi-symbolic representation: MTDFA

Explicit representation _>9 T @} Array of roots

MTBDDs
representing
outgoing
/’* edges

@ (will share

®) () I @ (o)) "oce

true/false BDD nodes as
accepting/rejecting sinks

LTL; Synthesis with MTDFA

MTDFA Constructions:

» Transform LTL; — FOL, then use
Mona for FOL — MTDFA.

» Use Mona’s MTDFA library to
translate LTL; to MTDFA by
composition.

Game Solving: convert MTDFA to
BDD, and solve symbolically.

Also exist on-the-fly approaches that
do not go through MTDFAs.

What Other Tools Have Tried

v

What we Suggest

@ Direct translation from LTL; to
MTBDD, building the MTDFA one
state at a time.

® Solving the game on the MTDFA
directly.

® Doing those on-the-fly.

https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/

LTL; Synthesis with MTDFA

MTDFA Constructions:

» Transform LTL; — FOL, then use
Mona for FOL — MTDFA.

» Use Mona’s MTDFA library to
translate LTL; to MTDFA by
composition.

Game Solving: convert MTDFA to
BDD, and solve symbolically.

Also exist on-the-fly approaches that
do not go through MTDFAs.

What Other Tools Have Tried

v

What we Suggest

@ Direct translation from LTL; to
MTBDD, building the MTDFA one
state at a time.

® Solving the game on the MTDFA
directly.
® Doing those on-the-fly.

v

https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/

Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

(The MTDFA______________]The Game Interpretation

o/ -

® (o [o] ©

-
-
>

)
4
“\I ’ @
Vo
!

@)

inputs

, above
outputs
for Mealy
r semantics

Seeing the MTDFA as a Game Arena

Actually stores
reversed edges.

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics

, above
@ | outputs
for Mealy
r semantics

Solve by backpropagation from 1.
& prop 9/ <

@)

® (o [o] ©

Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics

, above
outputs
for Mealy
r semantics

Actually stores
reversed edges.

@)

® (o [o] ©

Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics

, above
outputs
for Mealy
r semantics

Actually stores
reversed edges.

@)

® (o [o] ©

Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics

, above
outputs
for Mealy
r semantics

Actually stores
reversed edges.

Seeing the MTDFA as a Game Arena

Actually stores
reversed edges.

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics

, above
outputs
for Mealy
r semantics

Seeing the MTDFA as a Game Arena

Actually stores
reversed edges.

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics

, above
outputs
for Mealy
r semantics

Seeing the MTDFA as a Game Arena

Actually stores
reversed edges.

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics

, above
outputs
for Mealy
r semantics

Seeing the MTDFA as a Game Arena

Actually stores
reversed edges.

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics

, above
outputs
for Mealy
r semantics

Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

, above
outputs
for Mealy
r semantics

LTL; Synthesis with MTDFA

What we Suggest

@ Direct translation from LTL; to
MTBDD, building the MTDFA one

state at a time.

® Solving the game on the MTDFA
directly. v/

® Doing those on-the-fly.

https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/

From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.
Assume we know an MTBDD for the successors of aU b

l This is a deterministic representation
ﬁ of the next normal form (XNF):
v aUb=bv(arX(aUb))
i @\« /@ N

aub 1 (0]

From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.
Assume we know an MTBDD for the successors of aU b, and another for Fa.

ﬁ
»@\« /@ \

aUb 1 (0]

This is a deterministic representation
of the next normal form (XNF):

' aUb=bv(arX'(aUb))
Fa=av X'Fa

From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.
Assume we know an MTBDD for the successors of aU b, and another for Fa.

We want to compute an MTBDD for (aU b) A Fa:
(aUb)AFal (aUb)

<)

i

From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.
Assume we know an MTBDD for the successors of aU b, and another for Fa.

We want to compute an MTBDD for (aU b) A Fa:
(aUb)AFal (aUb)

Classical BDD apply procedure, but
combine terminals with “A”.

i

From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.
Assume we know an MTBDD for the successors of aU b, and another for Fa.

We want to compute an MTBDD for (aU b) A Fa:

(aUb)AFal (aUb)

|

Classical BDD apply procedure, but
combine terminals with “A”.

i

From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.
Assume we know an MTBDD for the successors of aU b, and another for Fa.

We want to compute an MTBDD for (aU b) A Fa:

(aUb)AFal (aUb)

|

Classical BDD apply procedure, but
combine terminals with “A”.

i

From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.
Assume we know an MTBDD for the successors of aU b, and another for Fa.

We want to compute an MTBDD for (aU b) A Fa:

(aUb)AFal (aUb)

|

Classical BDD apply procedure, but
combine terminals with “A”.

i

From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.

Assume we know an MTBDD for the successors of aU b, and another for Fa.

We want to compute an MTBDD for (aU b) A Fa:
(aUb)AFal (aUb)

|

Leaves @ and
the recursion.

1

Classical BDD apply procedure, but
combine terminals

vith “A”.

1

can help shortcut

From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.

Assume we know an MTBDD for the successors of aU b, and another for Fa.

We want to compute an MTBDD for (aU b) A Fa:
(aUb)AFal (aUb)

|

Leaves @ and
the recursion.

1

Classical BDD apply procedure, but
combine terminals

vith “A”.

1

can help shortcut

From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.
Assume we know an MTBDD for the successors of aU b, and another for Fa.

We want to compute an MTBDD for (aU b) A Fa:

. MTBDDs for subformulas are cached
(i.e., not thrown away) in case they are

! N needed later during the construction.

From LTL; to MTBDD: Formal Definition

tr(ff) =[0] tr(Xa) =
tr(tt) = | 1 tr(X'a) =a
tr(p) = @ forpeZUO tr(—a) = —tr(«)
@ 1 LTL; operator MTBDD operator
tr(a © 8) = tr(a) O tr(B) for any ® € {A,V, =, <>, &}
tr(a U 8) = tr(8) V (tr(a) A [a U B) tr(For) = tr(a) v

tr(a R 8) = tr(8) A (tr(a) v @R B) tr(Ga) = tr(a) A
With the convention that @ m @ = a \Y, ﬁ

From LTL; to MTDFA: Build States One at a Time

To translate (aU b) A Fa:

©® Compute successors of the initial
state: tr((aU b) A Fa)).

From LTL; to MTDFA: Build States One at a Time

|
ELIA To translate (aU b) A Fa:
©® Compute successors of the initial
ﬁa] state: tr((aU b) A Fa)).

aUb 1 (0]

Build States One at a Time

From LTL,; to MTDFA:

aU;J 1 @

To translate (aU b) A Fa:
©® Compute successors of the initial
state: tr((aU b) A Fa)).

® Compute successors for each new
terminal:

From LTL; to MTDFA: Build States One at a Time

|
(aU b) AFa) (au b

To translate (aU b) A Fa:
©® Compute successors of the initial

state: tr((aU b) A Fa)).
<y ® Compute successors for each new
T terminal:
/@ @X > tr(aUb) (cached)
\)

an 1

From LTL; to MTDFA: Build States One at a Time

'
(aUb)AFal [aUb] To translate (aU b) A Fa:

\

©® Compute successors of the initial
state: tr((aU b) A Fa)).

® Compute successors for each new
terminal:

» tr(aUb) (cached)
» tr(Fa) (cached)

\\\ 1
Ao

1

v
/ \
/7 \
4 . b

@us, [if [of (F

From LTL; to MTDFA: Build States One at a Time

'
(aUb)AFal [aUb] To translate (aU b) A Fa:

\

©® Compute successors of the initial
state: tr((aU b) A Fa)).
® Compute successors for each new
terminal:
» tr(aUb) (cached)
» tr(Fa) (cached)

® Done.

o .
Ao

1

v
/ \
/7 \
4 . b

@us, [if [of (F

Quick Note on Accepting Terminals

Our use of accepting terminals differs from Mona’s implementation of MTDFAs.

3

1
v ¥

Quick Note on Accepting Terminals

Our use of accepting terminals differs from Mona’s implementation of MTDFAs.

avb
If you interpret the MTBDD roots as .
’ states, you get a transition-based DFA:
Ca{ anb

1
v ¥

Quick Note on Accepting Terminals

Our use of accepting terminals differs from Mona’s implementation of MTDFAs.

avb
If you interpret the MTBDD roots as .
’ states, you get a transition-based DFA:
Ca{ anb

1

14 ;’,%’) i i anb
If you interpret the MTBDD terminals _)é;j/j
} as states, you get a state-based DFA:

Quick Note on Accepting Terminals

Our use of accepting terminals differs from Mona’s implementation of MTDFAs.

avb
If you interpret the MTBDD roots as .
’ states, you get a transition-based DFA:
@{ anb

14 ;’,%’) i i anb
If you interpret the MTBDD terminals _)é;j/j
} as states, you get a state-based DFA:

In any case, when using an MTDFA for synthesis,
accepting terminals can all be replaced by the accepting sink | 1 |. oy

LTL; Synthesis with MTDFA

What we Suggest

@ Direct translation from LTL; to
MTBDD, building the MTDFA one
state at atime. v

® Solving the game on the MTDFA
directly. v/

©® Doing those on-the-fly.

https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io VAN GI1) — (Oo /\X!X!O1)

The MTDFA The Game Interpretation

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io VAN GI1) — (Oo N X!X!O1)
The MTDFA The Game Interpretation
o

’ \
S
N
~ o N
~ S
So N
~ N
\?
\
4

[X!o1<—>Gi1l[:Gi1l —X'oy

>

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io VAN GI1) — (Oo /\X!X!O1)

-
b

S
N
N
~ S
~
~
~
¥ N

(X!O1<—>Gi1l(—|Gi1l

The MTDFA The Game Interpretation

Accepting
terminals can be
merged with 1.

—
G
J
x
o
)
>—

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io AN GI1) > (Oo N X!X!O1)
The MTDFA The Game Interpretation

.

’
/‘ ?

X O1<—>Gl1l ﬂGhl 1

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io VAN GI1) — (Oo N X!X!O1)
The MTDFA The Game Interpretation
o

N
Ay
\\ N

~ N\

N AN
1
B
Yy

[X!o1<—>Gi1])[:Gi1l 1

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io A GI1) < (Oo N X!X!O1)
The MTDFA The Game Interpretation

-8

*‘IV O1(—)Gl1l

[X!o1<—>Gi1])[:Gi1l 1

Building the MTDFA & Solving the Game On-The-Fly

p = (/0 VAN GI1) — (Oo /\X!X!O1)

The Game Interpretation
!

v

) :) “ X'01Giy | ~Giy
* . Backpropagation runs during construction.

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io A\ GI1) — (Oo A X!X!O1)
TheMTDFA TThe Game Interpretation

i

’
?
/‘ o1<—>G/1])

(XI (0} i (1

@her termlnal tc@ o

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io VAN GI1) — (Oo /\X!X!O1)

The MTDFA The Game Interpretation

-@

/“ W G
(X!O1<—>Gi1J/(:|Gi1]? 0 ﬁo:“L 014G J! X '1]>

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io VAN GI1) — (Oo /\X!X!O1)

The MTDFA The Game Interpretation

01 (—)Gl1

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io VAN GI1) — (Oo /\X!X!O1)

The MTDFA The Game Interpretation

01 (—)Gl1

ol s

)

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io AN GI1) > (Oo /\X!X!O1)

l
5/

@
b
A T

waed Gans o)

(_J

(The MTDFA _______________TThe Game Interpretation

01 (—)Gl1

gl

)

@velop this one next.

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io A GI1) < (Oo /\X!X!O1)

—> [01 (—)Gl1] [X!O1 (—)Gl1 }

1
8

The MTDFA The Game Interpretation

}
(ﬁ
XooGh i,

J

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io VAN GI1) — (Oo /\X!X!O1)

|

X 01<[>Gi1]/[ﬂGi1]? [0] j

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io VAN GI1) — (Oo /\X!X!O1)

|

oy i, il 0] R

Building the MTDFA & Solving the Game On-The-Fly

Y= (Io VAN GI1) — (Oo /\X!X!O1)

|

oy i, il 0] R

Building the MTDFA & Solving the Game On-The-Fly

p = (Io VAN GI1) — (Oo /\X!X!O1)

Building the MTDFA & Solving the Game On-The-Fly

p = (Io VAN GI1) — (Oo /\X!X!O1)

Building the MTDFA & Solving the Game On-The-Fly

p = (Io VAN GI1) — (Oo /\X!X!O1)

Building the MTDFA & Solving the Game On-The-Fly

p = (/0 VAN GI1) — (Oo /\X!X!O1)

Building the MTDFA & Solving the Game On-The-Fly

p = (/0 VAN GI1) — (Oo /\X!X!O1)

N
N

-
N

\ ey

A ’

vy s

V-

Y~

-
-~
-

(o] (o)

|

Output player has
a winning strategy.
We can stop.

@ver deve@

LTL; Synthesis with MTDFA

Implemented in two new tools
distributed with Spot 2.14

1tlfsynt 4

1tlf2dfa

What we Suggest

@ Direct translation from LTL; to
MTBDD, building the MTDFA one
state at atime. v

® Solving the game on the MTDFA
directly. v/

® Doing those on-the-fly. v/

https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/

A Benchmark (Specifications from SyntComp)

cputime

15min
5min +

2min
1min

10s
1s |

100ms ¢

10ms ¢

— Existing Tools —
Cynthia, Lisa, Lydia, LydiaSyft,
MoGuSer, Nike, SyftMax, Tople

200 400 600 800 1000 1200 1400
tasks ranked by cputime independently for each tool

A Benchmark (Specifications from SyntComp)

cputime

15min
5min +

2min
1min

10s
1s |

100ms ¢

10ms ¥

1t1lfsynt with full translation ——

— Existing Tools —
Cynthia, Lisa, Lydia, LydiaSyft,

MoGuSer, Nike, SyftMax, Tople

200 400 600 800 1000 1200 1400
tasks ranked by cputime independently for each tool

A Benchmark (Specifications from SyntComp)

restriction to accepting states
1t1lfsynt with full translation q

15min
5min +

2min
1min

10s

cputime

1s |

100ms 1 ~ = ' — Existing Tools —

MoGuSer, Nike, SyftMax, Tople
10ms .

200 400 600 800 1000 1200 1400
tasks ranked by cputime independently for each tool a1

A Benchmark (Specifications from SyntComp)

cputime

15min
5min +

2min
1min

10s
1s |

100ms ¢

10ms ¢

1t1lfsynt with full translation

— Existing Tools —
Cynthia, Lisa, Lydia, LydiaSyft,
MoGuSer, Nike, SyftMax, Tople

200 400 600 800 1000 1200 1400
tasks ranked by cputime independently for each tool

restriction to accepting states q
on-the-fly

A Benchmark (Specifications from SyntComp)

cputime

15min
5min +
2min
1min ¢

10s
1s |

100ms ¢

10ms

restriction to accepting states .
1t1fsynt with full translation q on-the-fly

with preprocessing

200 400 600 800 1000 1200 1400
tasks ranked by cputime independently for each tool a1

Conclusion

Gl T
Efficient LTL; tools to build upon l
Distributed with Spot 2.14: [Gmlm) (FQ&GMFQ) j
> 1tlf2dfa
> 1tlfsynt (= won SyntComp’25) .
» C++ & Python APIs available '

% y
Ideas to take away

» MTBDDs are great for deterministic
automata with propositional alphabets.

» Such automata can be interpreted as
games at the level of MTBDD nodes
(deciding one proposition at a time).

Warp Zone

19. Preprocessings X 20. Propositional Equivalence

Preprocessings

Simplify specification using polarity of propositions

» If an output proposition is always positive/negative in the specification,
replace it by T/L.

» If an input proposition is always positive/negative in the specification,
replace itby 1/T.

Example: G(/ — o) becomes G(T — T) =T.

Use cheap rewritings to reduce number of MTBDD operations
Xa A XB ~ X(a A B), (a = B)A(a—7)~a—=(BA7)

Split specification into output disjoint specifications when possible

If Wy and VW, are output-disjoint, and admit controllers that agree on accepting
lengths, then W; A W, can be solved as two independent problems.

https://gitlab.lre.epita.fr/spot/spot/-/issues/610

Propositional Equivalence

-
%

(GbV (Gan((Ga)W (Gb)))|

Propositional Equivalence

— (Ga) W (Gb) (GbV (GaA ((Ga) W (Gb))) |

e e
/ ‘/
e

(GbV (Gaa((Ga)W (Gb)))| (GbV (GaA (GbV (Gan ((Ga)W (Gb))))| -

Propositional Equivalence

— (Ga) W (Gb) (GbV (GaA ((Ga) W (Gb))) |

e e
/ ‘/
e

(GbV (Gaa((Ga)W (Gb)))| (GbV (Gaa (GbV (Gan ((Ga)W (Gb)))))| -

ps V (P2 A P1) Ps V (P2 A (P V (P2 A 1))

Propositional Equivalence
— (Ga) W (Gb) (GbV (GaA ((Ga) W (Gb))) |

Can be checked
using BDDs.

Propositional Equivalence

— (Ga) W (Gb) (GbV (GaA ((Ga) W (Gb))) |

Propositional equivalence
is needed for termination.
It also helps reducing
the automaton.

Gbv (Gan ((Ga)W (Gb)))

	Title
	Introduction
	Outline
	MTDFA as Game
	From LTLf to MTDFA
	On-the-Fly Construction
	Benchmark
	Conclusion
	Appendix

