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Given a specification relating input signals and output signals over time:
Realizability: decide if a controller exists;
Synthesis: construct it (e.g., as an And-Inverter Graph).
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A reactive controller produces output as a reaction to its input
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The reactive synthesis problems

Given a specification relating input signals and output signals over time:
Realizability: decide if a controller exists;
Synthesis: construct it (e.g., as an And-Inverter Graph).

Semantics for an LTL; specification

A_n_y execu[ion of the controller, seen as an infinite word such as
“Iol10004; Inl1000; Inl1 09 O; ...”, must have a finite prefix satisfying the specification.
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Text-Book Approach
1. LTL; specification ¢ 3. Make it a Reachability Game

(io VAN GI1) 4 (Oo VAN X!X!O1)
2. Build a DFA A,

Doubly exponential in ||,
independently of |X|

We also have an

/‘\'\ .
#' alphabet explosion problem, K g lete atiee) |5 AIADL L e
with ¥ = 27V¢
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Stopping the DFA Construction on Final States

The goal is to reach final states: we do not care about what follows.
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Fighting Alphabet Explosion with MTBDDs

Semi-symbolic representation: MTDFA

Explicit representation _>9 T @} Array of roots

MTBDDs
representing
outgoing
/’* edges

@ (will share

®) () I @ (o)) "oce

true/false BDD nodes as
accepting/rejecting sinks




LTL; Synthesis with MTDFA

MTDFA Constructions:

» Transform LTL; — FOL, then use
Mona for FOL — MTDFA.

» Use Mona’s MTDFA library to
translate LTL; to MTDFA by
composition.

Game Solving: convert MTDFA to
BDD, and solve symbolically.

Also exist on-the-fly approaches that
do not go through MTDFAs.

What Other Tools Have Tried

v

What we Suggest

@ Direct translation from LTL; to
MTBDD, building the MTDFA one
state at a time.

® Solving the game on the MTDFA
directly.

® Doing those on-the-fly.



https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/
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Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).
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Seeing the MTDFA as a Game Arena

Actually stores
reversed edges.

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics

, above
@ | outputs
for Mealy
r semantics

Solve by backpropagation from 1.
& prop 9/ <
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LTL; Synthesis with MTDFA

What we Suggest

@ Direct translation from LTL; to
MTBDD, building the MTDFA one

state at a time.

® Solving the game on the MTDFA
directly. v/

® Doing those on-the-fly.
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From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.
Assume we know an MTBDD for the successors of aU b

l This is a deterministic representation
ﬁ of the next normal form (XNF):
v aUb=bv(arX(aUb))
i @\« /@ N
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This is a deterministic representation
of the next normal form (XNF):
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From LTL; to MTBDD (not yet MTDFA)

Use LTL; formulas as terminals.
Assume we know an MTBDD for the successors of aU b, and another for Fa.

We want to compute an MTBDD for (aU b) A Fa:

. MTBDDs for subformulas are cached
(i.e., not thrown away) in case they are

! N needed later during the construction.




From LTL; to MTBDD: Formal Definition

tr(ff) =[ 0] tr(Xa) =
tr(tt) = | 1 tr(X'a) =a
tr(p) = @ forpeZUO tr(—a) = —tr(«)
@ 1 LTL; operator MTBDD operator
tr(a © 8) = tr(a) O tr(B) for any ® € {A,V, =, <>, &}
tr(a U 8) = tr(8) V (tr(a) A [a U B) tr(For) = tr(a) v

tr(a R 8) = tr(8) A (tr(a) v @R B) tr(Ga) = tr(a) A
With the convention that @ m @ = a \Y, ﬁ




From LTL; to MTDFA: Build States One at a Time

To translate (aU b) A Fa:

©® Compute successors of the initial
state: tr((aU b) A Fa)).
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|
ELIA To translate (aU b) A Fa:
©® Compute successors of the initial
ﬁa] state: tr((aU b) A Fa)).

aUb 1 (0]




Build States One at a Time

From LTL,; to MTDFA:

aU;J 1 @

To translate (aU b) A Fa:
©® Compute successors of the initial
state: tr((aU b) A Fa)).

® Compute successors for each new
terminal:
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©® Compute successors of the initial
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'
(aUb)AFal [aUb] To translate (aU b) A Fa:

\

©® Compute successors of the initial
state: tr((aU b) A Fa)).

® Compute successors for each new
terminal:

» tr(aUb) (cached)
» tr(Fa) (cached)
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From LTL; to MTDFA: Build States One at a Time

'
(aUb)AFal [aUb] To translate (aU b) A Fa:

\

©® Compute successors of the initial
state: tr((aU b) A Fa)).
® Compute successors for each new
terminal:
» tr(aUb) (cached)
» tr(Fa) (cached)

® Done.

o .
Ao

1

v
/ \
/7 \
4 . b

@us, [if [of (F




Quick Note on Accepting Terminals

Our use of accepting terminals differs from Mona’s implementation of MTDFAs.
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Quick Note on Accepting Terminals

Our use of accepting terminals differs from Mona’s implementation of MTDFAs.

avb
If you interpret the MTBDD roots as .
’ states, you get a transition-based DFA:
@{ anb

14 ;’,%’) i i anb
If you interpret the MTBDD terminals _)é;j/j
} as states, you get a state-based DFA:

In any case, when using an MTDFA for synthesis,
accepting terminals can all be replaced by the accepting sink | 1 |. oy




LTL; Synthesis with MTDFA

What we Suggest

@ Direct translation from LTL; to
MTBDD, building the MTDFA one
state at atime. v

® Solving the game on the MTDFA
directly. v/

©® Doing those on-the-fly.
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Building the MTDFA & Solving the Game On-The-Fly

p = (/0 VAN GI1) — (Oo /\X!X!O1)

The Game Interpretation
!

v

) : ) “ X'01Giy | ~Giy
* . Backpropagation runs during construction.
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Building the MTDFA & Solving the Game On-The-Fly

p = (/0 VAN GI1) — (Oo /\X!X!O1)
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Output player has
a winning strategy.
We can stop.
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LTL; Synthesis with MTDFA

Implemented in two new tools
distributed with Spot 2.14

1tlfsynt 4

1tlf2dfa

What we Suggest

@ Direct translation from LTL; to
MTBDD, building the MTDFA one
state at atime. v

® Solving the game on the MTDFA
directly. v/

® Doing those on-the-fly. v/
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A Benchmark (Specifications from SyntComp)

cputime

15min
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restriction to accepting states .
1t1fsynt with full translation q on-the-fly

with preprocessing
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tasks ranked by cputime independently for each tool a1



Conclusion

Gl T
Efficient LTL; tools to build upon l
Distributed with Spot 2.14: [Gmlm ) (FQ&GMFQ) j
> 1tlf2dfa
> 1tlfsynt (= won SyntComp’25) .
» C++ & Python APIs available '

% y
Ideas to take away

» MTBDDs are great for deterministic
automata with propositional alphabets.

» Such automata can be interpreted as
games at the level of MTBDD nodes
(deciding one proposition at a time).




Warp Zone

19. Preprocessings X 20. Propositional Equivalence



Preprocessings

Simplify specification using polarity of propositions

» If an output proposition is always positive/negative in the specification,
replace it by T/L.

» If an input proposition is always positive/negative in the specification,
replace itby 1/T.

Example: G(/ — o) becomes G(T — T) =T.

Use cheap rewritings to reduce number of MTBDD operations
Xa A XB ~ X(a A B), (a = B)A(a—7)~a—=(BA7)

Split specification into output disjoint specifications when possible

If Wy and VW, are output-disjoint, and admit controllers that agree on accepting
lengths, then W; A W, can be solved as two independent problems.



https://gitlab.lre.epita.fr/spot/spot/-/issues/610

Propositional Equivalence

-
%

(GbV (Gan((Ga)W (Gb)))|
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Propositional Equivalence

— (Ga) W (Gb) (GbV (GaA ((Ga) W (Gb))) |

e e
/ ‘/
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(GbV (Gaa((Ga)W (Gb)))| (GbV (Gaa (GbV (Gan ((Ga)W (Gb)))))| -

ps V (P2 A P1) Ps V (P2 A (P V (P2 A 1))



Propositional Equivalence
— (Ga) W (Gb) (GbV (GaA ((Ga) W (Gb))) |

Can be checked
using BDDs.




Propositional Equivalence

— (Ga) W (Gb) (GbV (GaA ((Ga) W (Gb))) |

Propositional equivalence
is needed for termination.
It also helps reducing
the automaton.

Gbv (Gan ((Ga)W (Gb)))
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