
Engineering an LTLf

synthesis tool

Alexandre Duret-Lutz Shufang Zhu Nir Piterman
Giuseppe De Giacomo Moshe Y. Vardi

CIA
A’25

1 / 17



Reactive Synthesis in a Nutshell

A reactive controller produces output as a reaction to its input

ī0i0i0ī0 ...
i1i1ī1ī1 ...

ō0o0o0o0...
ō1o1ō1ō1...

input signals
I={i0, i1, ...}

output signals
O={o0, o1, ...}

The reactive synthesis problems
Given a specification relating input signals and output signals over time:
Realizability: decide if a controller exists; our focus
Synthesis: construct it (e.g., as an And-Inverter Graph).

Semantics for an LTLf specification
Any execution of the controller, seen as an infinite word such as
“ī0 ī1ō0ō1; i0 ī1o0o1; i0i1o0ō1; ...”, must have a finite prefix satisfying the specification.

2 / 17



Reactive Synthesis in a Nutshell

A reactive controller produces output as a reaction to its input

ī0i0i0ī0 ...
i1i1ī1ī1 ...

ō0o0o0o0...
ō1o1ō1ō1...

input signals
I={i0, i1, ...}

output signals
O={o0, o1, ...}

The reactive synthesis problems
Given a specification relating input signals and output signals over time:
Realizability: decide if a controller exists; our focus
Synthesis: construct it (e.g., as an And-Inverter Graph).

Semantics for an LTLf specification
Any execution of the controller, seen as an infinite word such as
“ī0 ī1ō0ō1; i0 ī1o0o1; i0i1o0ō1; ...”, must have a finite prefix satisfying the specification.

2 / 17



Reactive Synthesis in a Nutshell

A reactive controller produces output as a reaction to its input

ī0i0i0ī0 ...
i1i1ī1ī1 ...

ō0o0o0o0...
ō1o1ō1ō1...

input signals
I={i0, i1, ...}

output signals
O={o0, o1, ...}

The reactive synthesis problems
Given a specification relating input signals and output signals over time:
Realizability: decide if a controller exists; our focus
Synthesis: construct it (e.g., as an And-Inverter Graph).

Semantics for an LTLf specification
Any execution of the controller, seen as an infinite word such as
“ī0 ī1ō0ō1; i0 ī1o0o1; i0i1o0ō1; ...”, must have a finite prefix satisfying the specification.

2 / 17



Text-Book Approach

1. LTLf specification φ

(i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

2. Build a DFA Aφ

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

3. Make it a Reachability Game

i0 i1 o0

ō0

¯i 0∨
¯i 1

ō0
o0

i1
⊤

¯i 1
⊤

ī 1

⊤

i1
⊤

i1

ō
1

o 1¯i 1

ō 1

4. Solve it
5. Extract a Controller if Desired

⊤/o0 ⊤/⊤ ī1/ō1

i1/o1

⊤/⊤

2-E
X

P
TIM

E

Linear
Linear

Doubly exponential in |φ|,
independently of |Σ|

We also have an
alphabet explosion problem,

with Σ = 2I∪O

3 / 17



Text-Book Approach

1. LTLf specification φ

(i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

2. Build a DFA Aφ

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

3. Make it a Reachability Game

i0 i1 o0

ō0

¯i 0∨
¯i 1

ō0
o0

i1
⊤

¯i 1
⊤

ī 1

⊤

i1
⊤

i1

ō
1

o 1¯i 1

ō 1

4. Solve it
5. Extract a Controller if Desired

⊤/o0 ⊤/⊤ ī1/ō1

i1/o1

⊤/⊤

2-E
X

P
TIM

E

Linear
Linear

Doubly exponential in |φ|,
independently of |Σ|

We also have an
alphabet explosion problem,

with Σ = 2I∪O

3 / 17



Text-Book Approach

1. LTLf specification φ

(i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

2. Build a DFA Aφ

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

3. Make it a Reachability Game

i0 i1 o0

ō0

¯i 0∨
¯i 1

ō0
o0

i1
⊤

¯i 1
⊤

ī 1

⊤

i1
⊤

i1

ō
1

o 1¯i 1

ō 1

4. Solve it
5. Extract a Controller if Desired

⊤/o0 ⊤/⊤ ī1/ō1

i1/o1

⊤/⊤

2-E
X

P
TIM

E

Linear
Linear

Doubly exponential in |φ|,
independently of |Σ|

We also have an
alphabet explosion problem,

with Σ = 2I∪O

3 / 17



Text-Book Approach

1. LTLf specification φ

(i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

2. Build a DFA Aφ

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

3. Make it a Reachability Game

i0 i1 o0

ō0

¯i 0∨
¯i 1

ō0
o0

i1
⊤

¯i 1
⊤

ī 1

⊤

i1
⊤

i1

ō
1

o 1¯i 1

ō 1

4. Solve it

5. Extract a Controller if Desired

⊤/o0 ⊤/⊤ ī1/ō1

i1/o1

⊤/⊤

2-E
X

P
TIM

E

Linear
Linear

Doubly exponential in |φ|,
independently of |Σ|

We also have an
alphabet explosion problem,

with Σ = 2I∪O

3 / 17



Text-Book Approach

1. LTLf specification φ

(i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

2. Build a DFA Aφ

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

3. Make it a Reachability Game

i0 i1 o0

ō0

¯i 0∨
¯i 1

ō0
o0

i1
⊤

¯i 1
⊤

ī 1

⊤

i1
⊤

i1

ō
1

o 1¯i 1

ō 1

4. Solve it
5. Extract a Controller if Desired

⊤/o0 ⊤/⊤ ī1/ō1

i1/o1

⊤/⊤

2-E
X

P
TIM

E

Linear
Linear

Doubly exponential in |φ|,
independently of |Σ|

We also have an
alphabet explosion problem,

with Σ = 2I∪O

3 / 17



Text-Book Approach

1. LTLf specification φ

(i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

2. Build a DFA Aφ

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

3. Make it a Reachability Game

i0 i1 o0

ō0

¯i 0∨
¯i 1

ō0
o0

i1
⊤

¯i 1
⊤

ī 1

⊤

i1
⊤

i1

ō
1

o 1¯i 1

ō 1

4. Solve it
5. Extract a Controller if Desired

⊤/o0 ⊤/⊤ ī1/ō1

i1/o1

⊤/⊤

2-E
X

P
TIM

E

Linear
Linear

Doubly exponential in |φ|,
independently of |Σ|

We also have an
alphabet explosion problem,

with Σ = 2I∪O

3 / 17



Text-Book Approach

1. LTLf specification φ

(i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

2. Build a DFA Aφ

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

3. Make it a Reachability Game

i0 i1 o0

ō0

¯i 0∨
¯i 1

ō0
o0

i1
⊤

¯i 1
⊤

ī 1

⊤

i1
⊤

i1

ō
1

o 1¯i 1

ō 1

4. Solve it
5. Extract a Controller if Desired

⊤/o0 ⊤/⊤ ī1/ō1

i1/o1

⊤/⊤

2-E
X

P
TIM

E

Linear
Linear

Doubly exponential in |φ|,
independently of |Σ|

We also have an
alphabet explosion problem,

with Σ = 2I∪O

3 / 17



Text-Book Approach

1. LTLf specification φ

(i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

2. Build a DFA Aφ

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

3. Make it a Reachability Game

i0 i1 o0

ō0

¯i 0∨
¯i 1

ō0
o0

i1
⊤

¯i 1
⊤

ī 1

⊤

i1
⊤

i1

ō
1

o 1¯i 1

ō 1

4. Solve it
5. Extract a Controller if Desired

⊤/o0 ⊤/⊤ ī1/ō1

i1/o1

⊤/⊤

2-E
X

P
TIM

E

Linear
Linear

Doubly exponential in |φ|,
independently of |Σ|

We also have an
alphabet explosion problem,

with Σ = 2I∪O

3 / 17



Text-Book Approach

1. LTLf specification φ

(i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

2. Build a DFA Aφ

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

3. Make it a Reachability Game

i0 i1 o0

ō0

¯i 0∨
¯i 1

ō0
o0

i1
⊤

¯i 1
⊤

ī 1

⊤

i1
⊤

i1

ō
1

o 1¯i 1

ō 1

4. Solve it
5. Extract a Controller if Desired

⊤/o0 ⊤/⊤ ī1/ō1

i1/o1

⊤/⊤

2-E
X

P
TIM

E

Linear
Linear

Doubly exponential in |φ|,
independently of |Σ|

We also have an
alphabet explosion problem,

with Σ = 2I∪O

3 / 17



Stopping the DFA Construction on Final States

The goal is to reach final states: we do not care about what follows.

Overkill

A

B C

D

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

Better

A B C D

ī0∨ī1

i0i1ō0

i0i1o0

i1

ī1

ī 1

i1 i1ō1

i1 o
1 ∨

ī1 ō
1

⊤

4 / 17



Stopping the DFA Construction on Final States

The goal is to reach final states: we do not care about what follows.

Overkill

A

B C

D

(ī0∨ī1)ō0

i0i1ō0

(ī0∨ī1)o0

i0 i1o0
i1

ī1

⊤

¯i 1

i1

ō1

i1 ō1

i1o1

¯i 1ō
1

i1

⊤

Better

A B C D

ī0∨ī1

i0i1ō0

i0i1o0

i1

ī1

ī 1

i1 i1ō1

i1 o
1 ∨

ī1 ō
1

⊤

4 / 17



Fighting Alphabet Explosion with MTBDDs

Explicit representation

A B C D

ī0∨ī1

i0i1ō0

i0i1o0

i1

ī1

ī 1

i1 i1ō1

i1 o
1 ∨

ī1 ō
1

⊤

Semi-symbolic representation: MTBDD

i0

i1

o0

B D 1

MTBDD representing
outgoing edges of A
(unique for a given
variable order)

true BDD node
as accepting sink

AD C B

i1 i1 i1

o1 o1

0 C

MTBDDs
representing
outgoing
edges
(will share
nodes)

Array of roots

true/false BDD nodes as
accepting/rejecting sinks

5 / 17



Fighting Alphabet Explosion with MTBDDs

Explicit representation

A B C D

ī0∨ī1

i0i1ō0

i0i1o0

i1

ī1

ī 1

i1 i1ō1

i1 o
1 ∨

ī1 ō
1

⊤

Semi-symbolic representation: MTBDD

i0

i1

o0

B D 1

MTBDD representing
outgoing edges of A
(unique for a given
variable order)

true BDD node
as accepting sink

AD C B

i1 i1 i1

o1 o1

0 C

MTBDDs
representing
outgoing
edges
(will share
nodes)

Array of roots

true/false BDD nodes as
accepting/rejecting sinks

5 / 17



Fighting Alphabet Explosion with MTBDDs

Explicit representation

A B C D

ī0∨ī1

i0i1ō0

i0i1o0

i1

ī1

ī 1

i1 i1ō1

i1 o
1 ∨

ī1 ō
1

⊤

Semi-symbolic representation: MTDFA

i0

i1

o0

B D 1

MTBDD representing
outgoing edges of A
(unique for a given
variable order)

true BDD node
as accepting sink

AD C B

i1 i1 i1

o1 o1

0 C

MTBDDs
representing
outgoing
edges
(will share
nodes)

Array of roots

true/false BDD nodes as
accepting/rejecting sinks

5 / 17



LTLf Synthesis with MTDFA

What Other Tools Have Tried
MTDFA Constructions:
▶ Transform LTLf → FOL, then use

Mona for FOL → MTDFA.
▶ Use Mona’s MTDFA library to

translate LTLf to MTDFA by
composition.

Game Solving: convert MTDFA to
BDD, and solve symbolically.
Also exist on-the-fly approaches that
do not go through MTDFAs.

What we Suggest
1 Direct translation from LTLf to

MTBDD, building the MTDFA one
state at a time.

2 Solving the game on the MTDFA
directly.

3 Doing those on-the-fly.

ltlf2dfa
www

ltlfsynt
www

Implemented in two new tools
distributed with Spot 2.14 www

6 / 17

https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/


LTLf Synthesis with MTDFA

What Other Tools Have Tried
MTDFA Constructions:
▶ Transform LTLf → FOL, then use

Mona for FOL → MTDFA.
▶ Use Mona’s MTDFA library to

translate LTLf to MTDFA by
composition.

Game Solving: convert MTDFA to
BDD, and solve symbolically.
Also exist on-the-fly approaches that
do not go through MTDFAs.

What we Suggest
1 Direct translation from LTLf to

MTBDD, building the MTDFA one
state at a time.

2 Solving the game on the MTDFA
directly. next slide

3 Doing those on-the-fly.

ltlf2dfa
www

ltlfsynt
www

Implemented in two new tools
distributed with Spot 2.14 www

6 / 17

https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/


Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

The MTDFA

i0

i1

o0

B D 1

AD C B

i1 i1 i1

o1 o1

0 C

inputs
above
outputs
for Mealy
semantics

The Game Interpretation

i0

i1

o0

B D 1

i1 i1 i1

o1 o1

0 C

Solve by backpropagation from 1.

Output player has
a winning strategy.

Actually stores
reversed edges.

7 / 17



Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

The MTDFA

i0

i1

o0

B D 1

AD C B

i1 i1 i1

o1 o1

0 C

inputs
above
outputs
for Mealy
semantics

The Game Interpretation

i0

i1

o0

B D 1

i1 i1 i1

o1 o1

0 C

Solve by backpropagation from 1.

Output player has
a winning strategy.

Actually stores
reversed edges.

7 / 17



Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

The MTDFA

i0

i1

o0

B D 1

AD C B

i1 i1 i1

o1 o1

0 C

inputs
above
outputs
for Mealy
semantics

The Game Interpretation

i0

i1

o0

B D 1

i1 i1 i1

o1 o1

0 C

Solve by backpropagation from 1.

Output player has
a winning strategy.

Actually stores
reversed edges.

7 / 17



Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

The MTDFA

i0

i1

o0

B D 1

AD C B

i1 i1 i1

o1 o1

0 C

inputs
above
outputs
for Mealy
semantics

The Game Interpretation

i0

i1

o0

B D 1

i1 i1 i1

o1 o1

0 C

Solve by backpropagation from 1.

Output player has
a winning strategy.

Actually stores
reversed edges.

7 / 17



Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

The MTDFA

i0

i1

o0

B D 1

AD C B

i1 i1 i1

o1 o1

0 C

inputs
above
outputs
for Mealy
semantics

The Game Interpretation

i0

i1

o0

B D 1

i1 i1 i1

o1 o1

0 C

Solve by backpropagation from 1.

Output player has
a winning strategy.

Actually stores
reversed edges.

7 / 17



Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

The MTDFA

i0

i1

o0

B D 1

AD C B

i1 i1 i1

o1 o1

0 C

inputs
above
outputs
for Mealy
semantics

The Game Interpretation

i0

i1

o0

B D 1

i1 i1 i1

o1 o1

0 C

Solve by backpropagation from 1.

Output player has
a winning strategy.

Actually stores
reversed edges.

7 / 17



Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

The MTDFA

i0

i1

o0

B D 1

AD C B

i1 i1 i1

o1 o1

0 C

inputs
above
outputs
for Mealy
semantics

The Game Interpretation

i0

i1

o0

B D 1

i1 i1 i1

o1 o1

0 C

Solve by backpropagation from 1.

Output player has
a winning strategy.

Actually stores
reversed edges.

7 / 17



Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

The MTDFA

i0

i1

o0

B D 1

AD C B

i1 i1 i1

o1 o1

0 C

inputs
above
outputs
for Mealy
semantics

The Game Interpretation

i0

i1

o0

B D 1

i1 i1 i1

o1 o1

0 C

Solve by backpropagation from 1.

Output player has
a winning strategy.

Actually stores
reversed edges.

7 / 17



Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

The MTDFA

i0

i1

o0

B D 1

AD C B

i1 i1 i1

o1 o1

0 C

inputs
above
outputs
for Mealy
semantics

The Game Interpretation

i0

i1

o0

B D 1

i1 i1 i1

o1 o1

0 C

Solve by backpropagation from 1.

Output player has
a winning strategy.

Actually stores
reversed edges.

7 / 17



Seeing the MTDFA as a Game Arena

Turn input/output nodes into universal/existential vertices.
Order input/output variables according to the desired semantics (Moore/Mealy).

The MTDFA

i0

i1

o0

B D 1

AD C B

i1 i1 i1

o1 o1

0 C

inputs
above
outputs
for Mealy
semantics

The Game Interpretation

i0

i1

o0

B D 1

i1 i1 i1

o1 o1

0 C

Solve by backpropagation from 1.

Output player has
a winning strategy.

Actually stores
reversed edges.

7 / 17



LTLf Synthesis with MTDFA

What Other Tools Have Tried
MTDFA Constructions:
▶ Transform LTLf → FOL, then use

Mona for FOL → MTDFA.
▶ Use Mona’s MTDFA library to

translate LTLf to MTDFA by
composition.

Game Solving: convert MTDFA to
BDD, and solve symbolically.
Also exist on-the-fly approaches that
do not go through MTDFAs.

What we Suggest
1 Direct translation from LTLf to

MTBDD, building the MTDFA one
state at a time. up next!

2 Solving the game on the MTDFA
directly. ✓

3 Doing those on-the-fly.

ltlf2dfa
www

ltlfsynt
www

Implemented in two new tools
distributed with Spot 2.14 www

8 / 17

https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/


From LTLf to MTBDD (not yet MTDFA)

Use LTLf formulas as terminals.
Assume we know an MTBDD for the successors of a U b

, and another for Fa.
We want to compute an MTBDD for (a U b) ∧ Fa:

(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa

This is a deterministic representation
of the next normal form (XNF):

a U b ≡ b ∨ (a ∧ X!(a U b))

Fa ≡ a ∨ X!Fa

9 / 17



From LTLf to MTBDD (not yet MTDFA)

Use LTLf formulas as terminals.
Assume we know an MTBDD for the successors of a U b, and another for Fa.

We want to compute an MTBDD for (a U b) ∧ Fa:

(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa

This is a deterministic representation
of the next normal form (XNF):

a U b ≡ b ∨ (a ∧ X!(a U b))

Fa ≡ a ∨ X!Fa

9 / 17



From LTLf to MTBDD (not yet MTDFA)

Use LTLf formulas as terminals.
Assume we know an MTBDD for the successors of a U b, and another for Fa.
We want to compute an MTBDD for (a U b) ∧ Fa:
(a U b) ∧ Fa a U b Fa

a? a a

b b b

a U b 1 0 Fa

9 / 17



From LTLf to MTBDD (not yet MTDFA)

Use LTLf formulas as terminals.
Assume we know an MTBDD for the successors of a U b, and another for Fa.
We want to compute an MTBDD for (a U b) ∧ Fa:
(a U b) ∧ Fa a U b Fa

a? a a

b b b

a U b 1 0 Fa

Classical BDD apply procedure, but
combine terminals with “∧”.

Leaves 0 and 1 can help shortcut
the recursion.

9 / 17



From LTLf to MTBDD (not yet MTDFA)

Use LTLf formulas as terminals.
Assume we know an MTBDD for the successors of a U b, and another for Fa.
We want to compute an MTBDD for (a U b) ∧ Fa:
(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa

Classical BDD apply procedure, but
combine terminals with “∧”.

Leaves 0 and 1 can help shortcut
the recursion.

9 / 17



From LTLf to MTBDD (not yet MTDFA)

Use LTLf formulas as terminals.
Assume we know an MTBDD for the successors of a U b, and another for Fa.
We want to compute an MTBDD for (a U b) ∧ Fa:
(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa

Classical BDD apply procedure, but
combine terminals with “∧”.

Leaves 0 and 1 can help shortcut
the recursion.

9 / 17



From LTLf to MTBDD (not yet MTDFA)

Use LTLf formulas as terminals.
Assume we know an MTBDD for the successors of a U b, and another for Fa.
We want to compute an MTBDD for (a U b) ∧ Fa:
(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa

Classical BDD apply procedure, but
combine terminals with “∧”.

Leaves 0 and 1 can help shortcut
the recursion.

9 / 17



From LTLf to MTBDD (not yet MTDFA)

Use LTLf formulas as terminals.
Assume we know an MTBDD for the successors of a U b, and another for Fa.
We want to compute an MTBDD for (a U b) ∧ Fa:
(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa

Classical BDD apply procedure, but
combine terminals with “∧”.
Leaves 0 and 1 can help shortcut
the recursion.

9 / 17



From LTLf to MTBDD (not yet MTDFA)

Use LTLf formulas as terminals.
Assume we know an MTBDD for the successors of a U b, and another for Fa.
We want to compute an MTBDD for (a U b) ∧ Fa:
(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa

Classical BDD apply procedure, but
combine terminals with “∧”.
Leaves 0 and 1 can help shortcut
the recursion.

9 / 17



From LTLf to MTBDD (not yet MTDFA)

Use LTLf formulas as terminals.
Assume we know an MTBDD for the successors of a U b, and another for Fa.
We want to compute an MTBDD for (a U b) ∧ Fa:
(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa

MTBDDs for subformulas are cached
(i.e., not thrown away) in case they are
needed later during the construction.

9 / 17



From LTLf to MTBDD: Formal Definition

tr(ff) = 0 tr(Xα) = α

tr(tt) = 1 tr(X!α) = α

tr(p) = p

0 1

for p ∈I ∪ O tr(¬α) = ¬tr(α)

tr(α⊙ β) = tr(α)⊙ tr(β) for any ⊙ ∈ {∧,∨,→,↔,⊕} previous slide

tr(α U β) = tr(β) ∨ (tr(α) ∧ α U β ) tr(Fα) = tr(α) ∨ Fα

tr(α R β) = tr(β) ∧ (tr(α) ∨ α R β ) tr(Gα) = tr(α) ∧ Gα

With the convention that α ∧ β = α ∧ β , α ∨ β = α ∨ β , ...

LTLf operator MTBDD operator

10 / 17



From LTLf to MTDFA: Build States One at a Time

(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa
? ?✓ ✓

To translate (a U b) ∧ Fa:
1 Compute successors of the initial

state: tr((a U b) ∧ Fa)).

2 Compute successors for each new
terminal:

▶ tr(a U b) (cached)
▶ tr(Fa) (cached)

3 Done.

11 / 17



From LTLf to MTDFA: Build States One at a Time

(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa
? ?✓ ✓

To translate (a U b) ∧ Fa:
1 Compute successors of the initial

state: tr((a U b) ∧ Fa)).

2 Compute successors for each new
terminal:

▶ tr(a U b) (cached)
▶ tr(Fa) (cached)

3 Done.

11 / 17



From LTLf to MTDFA: Build States One at a Time

(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa
? ?✓ ✓

To translate (a U b) ∧ Fa:
1 Compute successors of the initial

state: tr((a U b) ∧ Fa)).
2 Compute successors for each new

terminal:

▶ tr(a U b) (cached)
▶ tr(Fa) (cached)

3 Done.

11 / 17



From LTLf to MTDFA: Build States One at a Time

(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa
? ?✓ ✓

To translate (a U b) ∧ Fa:
1 Compute successors of the initial

state: tr((a U b) ∧ Fa)).
2 Compute successors for each new

terminal:
▶ tr(a U b) (cached)

▶ tr(Fa) (cached)
3 Done.

11 / 17



From LTLf to MTDFA: Build States One at a Time

(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa
? ?✓ ✓

To translate (a U b) ∧ Fa:
1 Compute successors of the initial

state: tr((a U b) ∧ Fa)).
2 Compute successors for each new

terminal:
▶ tr(a U b) (cached)
▶ tr(Fa) (cached)

3 Done.

11 / 17



From LTLf to MTDFA: Build States One at a Time

(a U b) ∧ Fa a U b Fa

a a a

b b b

a U b 1 0 Fa
? ?✓ ✓

To translate (a U b) ∧ Fa:
1 Compute successors of the initial

state: tr((a U b) ∧ Fa)).
2 Compute successors for each new

terminal:
▶ tr(a U b) (cached)
▶ tr(Fa) (cached)

3 Done.

11 / 17



Quick Note on Accepting Terminals
Our use of accepting terminals differs from Mona’s implementation of MTDFAs.

φ

a

b

φ φ

φ

ā ∨ b̄

a ∧ b

If you interpret the MTBDD roots as
states, you get a transition-based DFA:

φ φ

ā ∨ b̄
a ∧ b

ā ∨ b̄

a ∧ b

If you interpret the MTBDD terminals
as states, you get a state-based DFA:

In any case, when using an MTDFA for synthesis,
accepting terminals can all be replaced by the accepting sink 1 .

12 / 17



Quick Note on Accepting Terminals
Our use of accepting terminals differs from Mona’s implementation of MTDFAs.

φ

a

b

φ φ

φ

ā ∨ b̄

a ∧ b

If you interpret the MTBDD roots as
states, you get a transition-based DFA:

φ φ

ā ∨ b̄
a ∧ b

ā ∨ b̄

a ∧ b

If you interpret the MTBDD terminals
as states, you get a state-based DFA:

In any case, when using an MTDFA for synthesis,
accepting terminals can all be replaced by the accepting sink 1 .

12 / 17



Quick Note on Accepting Terminals
Our use of accepting terminals differs from Mona’s implementation of MTDFAs.

φ

a

b

φ φ

φ

ā ∨ b̄

a ∧ b

If you interpret the MTBDD roots as
states, you get a transition-based DFA:

φ φ

ā ∨ b̄
a ∧ b

ā ∨ b̄

a ∧ b

If you interpret the MTBDD terminals
as states, you get a state-based DFA:

In any case, when using an MTDFA for synthesis,
accepting terminals can all be replaced by the accepting sink 1 .

12 / 17



Quick Note on Accepting Terminals
Our use of accepting terminals differs from Mona’s implementation of MTDFAs.

φ

a

b

φ φ

φ

ā ∨ b̄

a ∧ b

If you interpret the MTBDD roots as
states, you get a transition-based DFA:

φ φ

ā ∨ b̄
a ∧ b

ā ∨ b̄

a ∧ b

If you interpret the MTBDD terminals
as states, you get a state-based DFA:

In any case, when using an MTDFA for synthesis,
accepting terminals can all be replaced by the accepting sink 1 .

12 / 17



LTLf Synthesis with MTDFA

What Other Tools Have Tried
MTDFA Constructions:
▶ Transform LTLf → FOL, then use

Mona for FOL → MTDFA.
▶ Use Mona’s MTDFA library to

translate LTLf to MTDFA by
composition.

Game Solving: convert MTDFA to
BDD, and solve symbolically.
Also exist on-the-fly approaches that
do not go through MTDFAs.

What we Suggest
1 Direct translation from LTLf to

MTBDD, building the MTDFA one
state at a time. ✓

2 Solving the game on the MTDFA
directly. ✓

3 Doing those on-the-fly. next slide

ltlf2dfa
www

ltlfsynt
www

Implemented in two new tools
distributed with Spot 2.14 www

13 / 17

https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/


Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



Building the MTDFA & Solving the Game On-The-Fly

φ = (i0 ∧ Gi1) ↔ (o0 ∧ X!X!o1)

The MTDFA

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

o0

φ

¬X!o1

o1↔Gi1 X!o1↔Gi1

i1 i1

o1 o1

0 o1↔Gi1¬o1

Accepting
terminals can be
merged with 1.

? ??✓ ?✓?
Pick another terminal to develop.Let’s develop this one next.Never developed.

The Game Interpretation

i0

i1

o0

X!o1↔Gi1 ¬Gi1 1

i1 i1

o1 o1

0 o1↔Gi1
??✓ ?✓

Backpropagation runs during construction.

Output player has
a winning strategy.

We can stop.

14 / 17



LTLf Synthesis with MTDFA

What Other Tools Have Tried
MTDFA Constructions:
▶ Transform LTLf → FOL, then use

Mona for FOL → MTDFA.
▶ Use Mona’s MTDFA library to

translate LTLf to MTDFA by
composition.

Game Solving: convert MTDFA to
BDD, and solve symbolically.
Also exist on-the-fly approaches that
do not go through MTDFAs.

What we Suggest
1 Direct translation from LTLf to

MTBDD, building the MTDFA one
state at a time. ✓

2 Solving the game on the MTDFA
directly. ✓

3 Doing those on-the-fly. ✓

ltlf2dfa
www

ltlfsynt
www

Implemented in two new tools
distributed with Spot 2.14 www

15 / 17

https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
https://spot.lre.epita.fr/


A Benchmark (Specifications from SyntComp)

200 400 600 800 1000 1200 1400
10ms

100ms

1s

10s

1min
2min
5min

15min

— Existing Tools —
Cynthia, Lisa, Lydia, LydiaSyft,
MoGuSer, Nike, SyftMax, Tople

without preprocessing

with preprocessing

tasks ranked by cputime independently for each tool

cp
ut

im
e

ltlfsynt with full translation
restriction to accepting states on-the-fly

16 / 17



A Benchmark (Specifications from SyntComp)

200 400 600 800 1000 1200 1400
10ms

100ms

1s

10s

1min
2min
5min

15min

— Existing Tools —
Cynthia, Lisa, Lydia, LydiaSyft,
MoGuSer, Nike, SyftMax, Tople

without preprocessing

with preprocessing

tasks ranked by cputime independently for each tool

cp
ut

im
e

ltlfsynt with full translation
restriction to accepting states on-the-fly

16 / 17



A Benchmark (Specifications from SyntComp)

200 400 600 800 1000 1200 1400
10ms

100ms

1s

10s

1min
2min
5min

15min

— Existing Tools —
Cynthia, Lisa, Lydia, LydiaSyft,
MoGuSer, Nike, SyftMax, Tople

without preprocessing

with preprocessing

tasks ranked by cputime independently for each tool

cp
ut

im
e

ltlfsynt with full translation
restriction to accepting states on-the-fly

16 / 17



A Benchmark (Specifications from SyntComp)

200 400 600 800 1000 1200 1400
10ms

100ms

1s

10s

1min
2min
5min

15min

— Existing Tools —
Cynthia, Lisa, Lydia, LydiaSyft,
MoGuSer, Nike, SyftMax, Tople

without preprocessing

with preprocessing

tasks ranked by cputime independently for each tool

cp
ut

im
e

ltlfsynt with full translation
restriction to accepting states on-the-fly

16 / 17



A Benchmark (Specifications from SyntComp)

200 400 600 800 1000 1200 1400
10ms

100ms

1s

10s

1min
2min
5min

15min

— Existing Tools —
Cynthia, Lisa, Lydia, LydiaSyft,
MoGuSer, Nike, SyftMax, Tople

without preprocessing

with preprocessing

tasks ranked by cputime independently for each tool

cp
ut

im
e

ltlfsynt with full translation
restriction to accepting states on-the-fly

16 / 17



Conclusion

Efficient LTLf tools to build upon
Distributed with Spot 2.14:
▶ ltlf2dfa
▶ ltlfsynt ( won SyntComp’25)
▶ C++ & Python APIs available

Ideas to take away
▶ MTBDDs are great for deterministic

automata with propositional alphabets.
▶ Such automata can be interpreted as

games at the level of MTBDD nodes
(deciding one proposition at a time).

17 / 17



Warp Zone

1. Title

2. Reactive Synthesis 3. Text-Book Approach 4. Stopping on Final States 5. MTBDD/MTDFA 6. Outline

7. MTDFA as game

9. LTLf →MTBDD example 10. LTLf →MTBDD formal 11. LTLf →MTDFA 12. Accepting Terminals

14. On-the-Fly

16. Benchmark

17. Conclusion

19. Preprocessings 20. Propositional Equivalence

18 / 17



Preprocessings

Simplify specification using polarity of propositions
▶ If an output proposition is always positive/negative in the specification,

replace it by ⊤/⊥.
▶ If an input proposition is always positive/negative in the specification,

replace it by ⊥/⊤.
Example: G(i → o) becomes G(⊤ → ⊤) ≡ ⊤.

Use cheap rewritings to reduce number of MTBDD operations
Xα ∧ Xβ ⇝ X(α ∧ β), (α → β) ∧ (α → γ)⇝ α → (β ∧ γ), ...

Split specification into output disjoint specifications when possible
If Ψ1 and Ψ2 are output-disjoint, and admit controllers that agree on accepting
lengths, then Ψ1 ∧Ψ2 can be solved as two independent problems. issue 610

19 / 17

https://gitlab.lre.epita.fr/spot/spot/-/issues/610


Propositional Equivalence

(Ga) W (Gb)

a

b

...

Gb ∨ (Ga ∧ ((Ga) W (Gb)))

...

Gb ∨ (Ga ∧ ((Ga) W (Gb)))

a

b

...

Gb ∨ (Ga ∧ (Gb ∨ (Ga ∧ ((Ga) W (Gb)))))

...

...

p3 ∨ (p2 ∧ p1) p3 ∨ (p2 ∧ (p3 ∨ (p2 ∧ p1)))≡

Can be checked
using BDDs.

Propositional equivalence
is needed for termination.

It also helps reducing
the automaton.

20 / 17



Propositional Equivalence

(Ga) W (Gb)

a

b

...

Gb ∨ (Ga ∧ ((Ga) W (Gb)))

...

Gb ∨ (Ga ∧ ((Ga) W (Gb)))

a

b

...

Gb ∨ (Ga ∧ (Gb ∨ (Ga ∧ ((Ga) W (Gb)))))

...

...

p3 ∨ (p2 ∧ p1) p3 ∨ (p2 ∧ (p3 ∨ (p2 ∧ p1)))≡

Can be checked
using BDDs.

Propositional equivalence
is needed for termination.

It also helps reducing
the automaton.

20 / 17



Propositional Equivalence

(Ga) W (Gb)

a

b

...

Gb ∨ (Ga ∧ ((Ga) W (Gb)))

...

Gb ∨ (Ga ∧ ((Ga) W (Gb)))

a

b

...

Gb ∨ (Ga ∧ (Gb ∨ (Ga ∧ ((Ga) W (Gb)))))

...

...

p3 ∨ (p2 ∧ p1) p3 ∨ (p2 ∧ (p3 ∨ (p2 ∧ p1)))≡

Can be checked
using BDDs.

Propositional equivalence
is needed for termination.

It also helps reducing
the automaton.

20 / 17



Propositional Equivalence

(Ga) W (Gb)

a

b

...

Gb ∨ (Ga ∧ ((Ga) W (Gb)))

...

Gb ∨ (Ga ∧ ((Ga) W (Gb)))

a

b

...

Gb ∨ (Ga ∧ (Gb ∨ (Ga ∧ ((Ga) W (Gb)))))

...

...

p3 ∨ (p2 ∧ p1) p3 ∨ (p2 ∧ (p3 ∨ (p2 ∧ p1)))≡

Can be checked
using BDDs.

Propositional equivalence
is needed for termination.

It also helps reducing
the automaton.

20 / 17



Propositional Equivalence

(Ga) W (Gb)

a

b

...

Gb ∨ (Ga ∧ ((Ga) W (Gb)))

...

Gb ∨ (Ga ∧ ((Ga) W (Gb)))

a

b

...

Gb ∨ (Ga ∧ (Gb ∨ (Ga ∧ ((Ga) W (Gb)))))

...

...

p3 ∨ (p2 ∧ p1) p3 ∨ (p2 ∧ (p3 ∨ (p2 ∧ p1)))≡

Can be checked
using BDDs.

Propositional equivalence
is needed for termination.

It also helps reducing
the automaton.

20 / 17


	Title
	Introduction
	Outline
	MTDFA as Game
	From LTLf to MTDFA
	On-the-Fly Construction
	Benchmark
	Conclusion
	Appendix

