O Copyright by Steven Michael Parkes, 1994

A CLASSLIBRARY APPROACH TO
CONCURRENT OBJECT-ORIENTED PROGRAMMING
WITH APPLICATIONS TO VLSI CAD

BY
STEVEN MICHAEL PARKES

B.S., University of California, Davis, 1982
M.S., University of California, Davis, 1989

THESIS

Submitted in partial fulfillment of the requirements
for the the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

A CLASSLIBRARY APPROACH TO
CONCURRENT OBJECT-ORIENTED PROGRAMMING
WITH APPLICATIONS TO VLSI CAD

Steven Michael Parkes, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1994
Prithvirg) Banerjee, Advisor

Despite increasing availability, the use of parallel platforms in the solution of signifi-
cant computing problemsremainslargely restricted to a set of well-structured, numeric ap-
plications. Thisisdue in part to the difficulty of parallel application development, which
isitself largely the result of alack of high-level development environments applicable to
the majority of extant parallel architectures. This thesis addresses the issue of facilitating
the application of parallel platforms to unstructured problems through the use of object-
oriented design techniques and the actor model of concurrent computation. We present a
multilevel approach to expressing parallelism for unstructured applications: ahigh-level in-
terface based on the actor and aggregate model sof concurrent object-oriented programming,
and a low-level interface which provides an object-oriented interface to system services
across awide range of diverse parallel architectures. The interfaces are manifested in the
ProperCAD Il library, aC*tt object library supporting actor concurrency on microprocessor-
based parallel architectures and appropriate for applications exhibiting medium-grain par-
alelism. Theinterface supports uniprocessors, shared memory multiprocessors, distributed
memory multicomputers, and hybrid architectures comprising network-connected clusters
of uni- and multiprocessors. The library currently supports workstations from Sun, shared
memory multiprocessors from Sun and Encore, distributed memory multicomputers from
Intel and Thinking Machines, and hybrid architectures comprising | P network-connected
clusters of Sun uni- and multiprocessors. We demonstrate our approach through an exami-
nation of the parallelization process for two existing unstructured seria applications drawn
from the field of VLSI computer-aided design. We compare and contrast the library-based
actor approach to other methods for expressing parallelism in Ct.

A CLASSLIBRARY APPROACH TO
CONCURRENT OBJECT-ORIENTED PROGRAMMING
WITH APPLICATIONS TO VLSI CAD

Steven Michael Parkes, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1994
Prithvirg) Banerjee, Advisor

Despite increasing availability, the use of parallel platforms in the solution of signifi-
cant computing problemsremains largely restricted to a set of well-structured, numeric ap-
plications. Thisis due in part to the difficulty of parallel application development, which
isitself largely the result of alack of high-level development environments applicable to
the majority of extant parallel architectures. This thesis addresses the issue of facilitating
the application of parallel platforms to unstructured problems through the use of object-
oriented design techniques and the actor model of concurrent computation. We present a
multilevel approach to expressing parallelism for unstructured applications: ahigh-level in-
terface based on the actor and aggregate model sof concurrent object-oriented programming,
and a low-level interface which provides an object-oriented interface to system services
across awide range of diverse parallel architectures. The interfaces are manifested in the
ProperCAD Il library, aCtt object library supporting actor concurrency on microprocessor-
based parallel architectures and appropriate for applications exhibiting medium-grain par-
allelism. Theinterface supports uniprocessors, shared memory multiprocessors, distributed
memory multicomputers, and hybrid architectures comprising network-connected clusters
of uni- and multiprocessors. The library currently supports workstations from Sun, shared
memory multiprocessors from Sun and Encore, distributed memory multicomputers from
Intel and Thinking Machines, and hybrid architectures comprising |P network-connected
clusters of Sun uni- and multiprocessors. We demonstrate our approach through an exami-
nation of the parallelization process for two existing unstructured seria applications drawn
from the field of VLSI computer-aided design. We compare and contrast the library-based
actor approach to other methods for expressing parallelism in Ct.

DEDICATION

To my parents, Dayle and Genie

ACKNOWLEDGMENTS

| would like to thank my advisor, Professor Prithvirg) Banerjee, for supporting and di-
recting this work. 1 would like to thank the members of my committee, Professors Agha,
Chien, Hwu, Patel, and Polychronopoulos, for their effortsin reviewing and critiquing my
progress and this thesis.

| would like to express my thanks to the members of the ProperCAD and Paradigm
projectsfor both their technical helpinissuesof parallel computing and their camaraderie. |
would especially liketo thank John Chandy, my officemate, who not only served asa source
of insight and a sounding board for ideas but also developed several large applications on
the ProperCAD I library with virtually no documentation.

| would like to thank the members, both present and former, of the Center for Reliable
and High Performance Computing. Specia thanks are due to Ken Kubiak for technical in-
sight, encouragement, and empathy.

| owe agreat debt to my parents, Dayle and Genie, and my siblings, Cheryl, Chris, and
Debbie, for their invaluable love, encouragement, and understanding during my doctoral
degree program.

Thiswork was supported in part by the Semiconductor Research Foundation. The Ar-
gonne National Laboratory, the San Diego Supercomputer Center, and the National Center
for Supercomputer Applications provided support by providing access to their computing
resources.

TABLE OF CONTENTS

Chapter

1

INTRODUCTION e e e e
1.1 Computer-Aided Designfor VLSlo
1.2 A ClassLibrary for Concurrent Object-Oriented Programming
1.3 Summary of Contributions
14 Overview e

CONCURRENT OBJECT-ORIENTED PROGRAMMING
2.1 HardwareArchitectureso
2.2 High-level ProgrammingModels
2.3 Implementation Architectures
24 Composability
25 AClassLibrary Approach
2.6 Other Modelsand Implementations

THEACTORINTERFACE
3.1 Actorsand ContinuationPassingStyle.
3.2 Concurrent Objects
33 Concurrent Collections.o
34 Peformance
35 Evauaion
3.6 Other Actor Modelsand Implementations

ABSTRACT PARALLEL ARCHITECTURE
41 ThreedManagement
4.2 ResourceManagement L. Lo o
4.3 CommunicationManagement
4.4 ConfigurationManagement
45 Peaformance
4.6 Evauation
4.7 Other Modelsand Implementations

Vi

META-PROGRAMMABILITY o .. 85
51 Loca Metaprogrammability 85
5.2 Globa Meta-programmability 95
53 Evauation 99
54 Other Modelsand Implementations 100
PARALLEL TEST GENERATION 102
6.1 TestPatternGeneration 103
6.2 H TEC A Serid TestGenerator 104
6.3 Approachesto Parallel Test Generation 107
6.4 Pardld Test Generation using Actor Paralldlism. 109
65 ProperH TEC 112
6.6 Peformance 115
6.7 Evauation 118
PARALLEL FAULT SIMULATION 122
71 FaultSimulation 123
7.2 PROOFS: A Serid Fault Smulator 125
7.3 Approachesto Paradlldl Fault Smulation 126
7.4 Pardld Fault Smulation Using Actor Pardlelism 129
75 ProperPROOFS 134
76 Peformance 136
7.7 Evauaion 141
CONCLUSIONS s e e e 148
REFERENCES e 150

viii

LIST OF TABLES

Table Page
3.1 Costsof actorprimitives 45
4.1 Round-trip latency for IPmessagepassing. 77
4.2 Bandwidthfor IPmessagepassing oL 77
4.3 APAtriplesforvariousmachines 79
44 Linesof codein APA 79
6.1 ClassesinHITEC 107
6.2 Proper H TECresultsonSun4/670MP 115
6.3 Proper H TECresultsonintel iPSC/860 116
6.4 ProperH TECresultson EncoreMultimax 116
6.5 ProperH TECresultsonclusters 117
6.6 Increased efficiency inProperHITEC 117
6.7 Comparison of Pr oper H TECand Pr oper TEST oniPSC/860 118
6.8 Comparison of software metricsfor HH TECand ProperHI TEC 119
6.9 Actor Met hods foreachclassinProperHITEC. 120
6.10 Member functionsinHI TECand ProperHI TEC 120
6.11 New virtua membersinHHTEC 121
7.1 Runtime and speedup for static fault distribution on theiPSC/860 130
7.2 Time(ms) of fault simulationoperations. 134
7.3 Proper PROOFSresultson Intel iPSC/860: random vectors 137
7.4 Proper PROOFS resultson Intel Paragon: randomvectors 138
7.5 Proper PROOFS resultson Sun 4/670MP: randomvectors 139
7.6 Proper PROOFSresultson Intel iPSC/860: STGvectors. 140
7.7 Proper PROOFS resultson Intel Paragon: STGvectors 141
7.8 Proper PROOFSresultson Sun 4/670MP: STGvectors 142
7.9 Good and faulty simulation of s35932onParagon 143
7.10 Comparison of static and dynamic fault distributionon iPSC/860 144
7.11 Comparison of software metrics for PROOFS and Pr oper PROOFS 147
7.12 Act or Met hods foreachclassinProperPROOFS 147

7.13 Member functionsin PROOFSand ProperPROOFS 147

LIST OF FIGURES

Figure

11

21
22
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

6.1
6.2
6.3

7.1
7.2
7.3
7.4

Anoverview of theProperCAD project

Shared memory multiprocessor oL
Distributed memory multiprocessor
Hybrid multiprocessor
Communication and consistency insharedmemory
Communication on distributed memory architectures
Spectrum of parallelism L
Composability in send-recelveand actormodels.

Actor operations e
RPCand Actors/CPS
Implementationsof aconcurrentarray

APA thread managementclasses.
Useof ThreadManager class
APA freestoremanagementclasses
Reservoirsizemapping
Datagramlayout
APAdimensions

Task QUEUES e
Priority class hierarchy for ATPG
Heterogeneous lexicographic priorities
Cdl by vaueandfirstclassvalues.

H TEC/ PROOFS organizationo
ParallelisminProperHI TEC
Proper H TECorganization

Fault smulationtablemodd
Concurrent and deductivefault smulation
Differential fault smulation
Bit-paralle fault smulation

7.5
7.6
7.7
7.8

PROOFSorganization e 127
Split request in fault redistributiono oL 131
Forwarding of splitrequests 133
Proper PROOFSorganization 134

| nterface

31
3.2
33
34
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4
5.5
5.6

cl ass
cl ass
cl ass
cl ass
cl ass
cl ass

cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass

cl ass
cl ass
cl ass
cl ass
cl ass
cl ass

Xi

LIST OF INTERFACES

Page
ACtor e 33
ActorNameo 35
Continuation. 37
Continuation<Type> 40
Aggregate 42
AggregateNanme Lo oL 43
Thread 58
Process 59
ProcessGroup.o 60
Custer e 61
ThreadManager 62
FreeStore L 65
PageTable 66
Reservoir 67
Datagram. L 70
Semaphore 71
Machine 72
Network 74
TaskQueue L 87
Priority 89
PriorityConmparator 89
Value 91
Distribution., 93
Director 97

Chapter 1
INTRODUCTION

The desireto utilize multiple processors to solve significant computing problems has, to
date, been largely unattainablefor all but a set of restricted problems, namely the numerical
problems found in scientific applications and the database problems found in transaction-
processing applications. While substantial computing problems exist in other fields, the
techniquesand implementationsused inthe parallelization of scientific and transaction-processing
applicationshave not proven similarly effective on unstructured problems. Thelack of struc-
ture in these classes of problems de-emphasizes floating point vector operations while it
emphasi zes operations that comprise a mixture of integer and floating point instructions on
pointer-based data structures. Existing parall€lization methods, both manual and automatic,
often fail on this class of application to achieve results comparabl e to those on numeric and
structured applications.

Withincreasing interest in the parallelization of alarger set of applications comes a shift
in the way in which parallelization is approached. For example, many classical parallel ap-
plications have been devel oped to solve specific research problems; these efforts were often
targeted toward specific architectures—those available to the researchers. Because the re-
sult of the research was the knowledge gained by solving a particular problem and not a
paralel application, the dependence on a particular architecture was not considered a sig-
nificant drawback.

In contrast, as parallel machineshave proliferated, abroader range of application design-
ers has been attracted. For these designers, the lack of a dominant architecture or particu-
lar machine engenders the need to pursue an architecture-independent solution to archive a
cost-effective solution. Moreover, asignificant degree of new interest in scal able platforms
is coming from vendors of existing serial applications. As aresult, thereis need for paral-
Ielization methods that can be incrementally applied to existing code. Finally, because the

2

cost of developing parallel softwareisinherently greater than that of devel oping serial soft-
ware, the recent interest in code reuse is a least as strong in parallel processing asitisin
seria processing.

Technol ogiesfrom concurrent object-oriented programming can be used to address each
of these issues. Abstract high-level models can be used to provide a degree of insulation
from architectural details. Encapsulation via well-defined interfaces can be used to facili-
tate modular development and code reuse. Inheritance and dynamic binding can be used to
facilitate incremental parallelization of existing serial object-oriented applications.

While these technologies exist in the field of concurrent object-oriented programming,
they take numerousdiverseforms. Generating acohesiveinterfacethat meetsall application
needsis probably infeasible; not only do the requirements of different fieldsvary widely, the
evauation of a‘good’ interface often varies among individuals, even within the same field.

In thiswork, we present an interface for concurrent object-oriented programming that is
applicable to computer-aided design (CAD) applicationsfor VLSI. To the extent that VL SI
CAD applications are characteristic of large Ct* applications, the interface should also find
application in other domains. The interface is defined in terms of Ct+ classes and imple-
mented in the ProperCAD Il classlibrary. In the remainder of this chapter, we consider the
characteristics of VLS| CAD applications, briefly comment on how a class library can be
used to parallelize CAD applications, summarizethe contributions of thisresearch, and give
an overview of the chapters that follow.

1.1 Computer-Aided Design for VLSI

Todesignincreasingly complex VLS| systems, continued—and in some cases radical—
progress is required in design technologies, especially the algorithms and applications for
VLSl CAD. CAD applications differ substantially from the scientific applications which
have traditionally formed the bulk of supercomputing workloads. CAD applications are
characterized by:

e |ong execution times, sometimes more than aweek for individual runs on contempo-
rary uniprocessor platforms

e qualities of result which are directly dependent on the magnitude of computing re-
sources applied

e adirect correlation between application turnaround time and design cycle length

e multimegabyte data sets
e irregular, unstructured data organizations

e resistance to well-known parall€elization techniques

Examples of VLSl CAD problems are test pattern generation, logic synthesis, circuit
extraction, and cell placement and routing.

Automatic test pattern generation (ATPG) for VLS circuitsisthe process of generating
test patterns, sets of inputsto integrated circuitsthat are applied to fabricated devicesto de-
termineif any defects occurred during manufacturing. Although the complexity of ATPGis
daunting—it isan NP-compl ete search problem—it is nonethel ess considered indispensable
for maintaining the manufacturing quality of ever larger VLS devices.

Logic synthesis comprises the creation and optimization of digital circuits represented
asnetlistsof logic and state elements. Because of increasing circuit densities, thelast decade
has seen aconsiderableincreaseininterest in agorithmsfor the automatic synthesisof VLS
circuits. Thereisindustry consensus that only through synthesiswill it be possible to man-
age the design complexity of the current and future generations of VLSI chips. Most syn-
thesis algorithms are both memory and processor intensive and display a quality of results
tightly coupled to the resources applied.

Circuit extraction is the process of taking aVLSI mask-level layout and extracting cir-
cuit connectivity and parametric values. The results of extraction are used to verify both
design correctness and performance requirements, usually after automatic placement and
routing. Extractionistypically performed on acircuit description provided in terms of rect-
angleson variousmask layers. The number of rectanglesisapproaching 100 millionin con-
temporary microprocessor designs; few platformsavailableinindustry havetheresourcesto
handle these designs efficiently. Given the frequency of use—extraction isiterated with de-
sign changesto verify changes and to update extracted parametric i nformati on—techniques
to take advantage of all available resources are invaluable.

Whenthelogicdesignfor aVLSI circuit has been completed, cell placement and routing
are performed. With chips approaching tens of millions of gates, the time required for this
process on large chips often exceeds days and is quickly approaching weeks on state-of -the-
art workstations. Asin other CAD tasks, the quantity of resources applied to the problem
has a direct impact on the quality of results.

Even with the preponderance of evidence indicating that virtually any method of man-
aging the application development process and any techniquefor improving quality through

4

additional resources would appear promising, it isstill the casethat neither parallel process-
ing nor object-oriented techniques are well represented in the CAD development commu-
nity. This situation is not without justification for a number of reasons:

e For more than a decade, most CAD devel opment has been performed in the C pro-
gramming language, and until the advent of Ct+*, use of an object-oriented language
impliedthe sacrifice of existing code, an unacceptablealternative. Evenwiththeavail-
ability of Ctt, adoption is slow; Ctt is significantly more complicated than C and is
still undergoing rapid development. Development tools are only now attaining the
degree of stability required for even the most aggressive commercia development.

e Dueto alack of widely available libraries, much of the promise of code reuse asso-
ciated with object-oriented programming remains to be realized. Given the ability in
Ct* to trade flexibility for efficiency, the process of generating reusable code is com-
plicated by the fact that the set of design choices, in terms of flexibility versus over-
head, for one application may not be acceptable for another; CAD problems, with
their inherent complexity and size, are known to be sensitive to overheadsin area or
space.

e Until recently, thewidespread availability to CAD usersof parallel platformshasbeen
severely limited. Supercomputers havein general been limited to the restricted appli-
cation domains mentioned previously. The techniques developed for these platforms
have had no place for application in the CAD community. With little availability of
parallel platforms, interest in parallel solutionsto CAD problems has been relatively
low. With only limited development of parallel applications, little impetus exists for
CAD usersto explore the cost benefit trade-off of parallel platforms.

e Thegeneration of efficient parallel algorithms has been impeded by concurrent rapid
improvements in serial algorithms. Often by the time a parallel CAD algorithm is
completed, it lags significantly behind the quality, and sometimes even the perfor-
mance, of contemporary serial algorithms. Given the high cost of developing new
applications, support for a parallel track of separate parallel toolswhich mirrors a set
of serial toolsis prohibitive.

Figure 1.1 An overview of the ProperCAD project

6

actor model of concurrent object-oriented programming with a statically typed imperative
language, Ct+, and alow-level abstract machineinterface that can be used to parametrically
describe awide variety of concrete architectures.

The development of theinterface has been driven by and eval uated against two new par-
ald applications, parallel test pattern generation and parallel fault ssmulation, each incre-
mentally developed from an existing state-of-the-art serial application. In addition to pro-
viding a basis for evaluating the usability of the interface, these applications embody new
approaches to their target problems.

1.3 Summary of Contributions
The primary contributions of thisthesis are:

1. A classlibrary interfacefor actor-based parallelism in a statically typed language and
based on built-in type mechanisms.

2. An implementation of aggregates providing the functionality described in [5] with
additional meta-programmability features.

3. An interface supporting composable meta-programming of an actor system on con-
temporary microprocessor-based machines.

4. Anopenimplementation supporting application-specific customization of theruntime
support system.

5. Anabstract parallél architectural model with aclasslibrary interface, capable of para-
metrically describing the majority of contemporary parallel architectures.

6. New parallel algorithmsfor test pattern generation and fault simulationincrementally
derived from state-of-the-art serial algorithms.

1.4 Overview

In Chapter 2, wereview recent work in thefield of concurrent object-oriented program-
ming and consider application of object-oriented programming techniques to unstructured
problems. Chapter 3 presents the primitives in the actor interface. In Chapter 4, we con-
sider aplatform for implementation of the actor primitives, the abstract parallel architecture.
Chapter 5 presents extensions of the actor interface to support for meta-programmability.

7

Chapter 6 introduces test generation, an unstructured application drawn from the area of
VLSl CAD, and demonstrates how the interfaces devel oped in thiswork are used to paral-
lelize an existing serial test application. Chapter 7 presentsthe parallelization of fault simu-
lation by using the actor and aggregate models and reports an implementation based on the
ProperCAD I library. Chapter 8 summarizes our experiences parallelizing serial applica
tions using the new interface, presents observations on the most significant success of the
interface, and proposes features that would extend the usability of the interface and imple-
mentation.

Chapter 2

CONCURRENT OBJECT-ORIENTED
PROGRAMMING

Concurrent computing isthe use of multiple processorsto solve asingle problem. Con-
current machines have existed amost as long as computers themselves, yet the use of con-
currency to improve run times and resultsis still limited to afew specialized areas. Thisis
in large part due to the difficulty in producing concurrent programs that are both effective
in improving performance and manageable from a devel opment perspective.

When creating concurrent programs, the programmer must deal with two competingis-
sues. expression of concurrency and control of the stateinterference caused by concurrency.
Expression of concurrency isthetask of breaking a problem into multiple subproblemsthat
can be then processed concurrently. In this respect, a serial program is the degenerate case
of a concurrent program. If insufficient concurrency is expressed in a program, the effec-
tiveness of the program will be limited. A program with limited concurrency is not scal-
able, i.e, there is a bound on the number of processors which can be applied to the prob-
lem beyond which processor utilization falls dramatically. Whilelimitsin scalability argue
for highly concurrent programs, programs of this type have drawbacks as well. First, if a
highly concurrent program has alow ratio of computation to communication, it may fail to
achieve sufficient processor utilization. Second, when additional concurrency is expressed,
the issue of state interference arises. If two concurrent tasks reference data whose values
change as computation progresses, the likelihood of race conditions due to intertask inter-
ference rises. Thus, when a programmer expresses additional concurrency, he must at the
same time ensure that state interference does not invalidate the result of the program.

In concurrent object-oriented programming [6], the object model and object-oriented
programming primitives are used to address issues of expression of concurrency and man-

9

agement of interference. In this chapter, we broadly review hardware architectures, pro-
gramming models, and programming model implementations. We conclude the chapter
withabroad overview of thelibrary interface devel opedinthiswork and presented in greater
detail in following chapters.

2.1 Hardware Architectures

Parallel architectures cover a broad range of implementations, from low concurrency
systems composed of asfew astwo processorsto highly-concurrent systemswith thousands
of processors. Concurrent architecturesalso vary in both the manner and efficiency of com-
munication, from systems with interprocessor bandwidths of hundreds of megabytes per
second and communication frequency on the order of afew instructions to systems with a
few megabytes per second bandwidth and communication latencies in milliseconds.

Traditionally, concurrent architectures could be cleanly divided into two classes, shared
memory architectures and distributed memory architectures. In recent years, distributed
shared memory (logically shared, physically distributed) architectures such as the Kendall
Square KSR-1 [7] have been introduced. Additionally, with the rapid increase in intercon-
nectivity vialocal - and wide-area networks, virtually all machines can now be considered
concurrent in as much as they support some form of message passing interconnection.

This section considers a few key characteristics of each of these architecture classes.
It should be noted that these are hardware architectures and do not necessarily reflect the
programming model as viewed by the application programmer. It is possible, via compil-
ers, runtimelibraries, and operating systems, to implement any of the application program-
ming models of the next section on any of the hardware architectures presented below. We
use the term low-level programming model to describe the model supported directly by the
hardware and high-level programming model to describe the model seen by applications.
High-level programming models are considered in Section 2.2.

2.1.1 Shared memory

Shared memory architectures are constructed from anumber of processing and memory
moduleswhich are connected viaan interconnection network (Figure2.1). Inthefirst gener-
ation of shared memory machines, processing modules generally lacked memory other than
that represented by the registers in each CPU and the interconnection network was gener-
ally abus. Both of these characteristics led to scaling problems. To improve performance,

10

Processor Processor Processor

Interconnection Network
I I I

Memory Memory Memory

Figure 2.1 Shared memory multiprocessor

local caches were added to each processor. While this addition drastically cuts the latency
of memory referencesit introduces problems of cache coherency. More advanced intercon-
nection networks have also been developed, including crossbar and multistage networks.
Even though the addition of cache mechanisms has enabled the scaling of shared memory
machines to larger sizes, the difficulty of maintaining cache coherence typicaly limits the
feasibility of this approach to tens of processors. It isthe cache coherence of these models
that distinguishes them from other uniform address space models.

2.1.2 Distributed memory

In distributed memory architectures, each processing module consists of both a proces-
sor and local memory. Processor modules are interconnected by a network (Figure 2.2).
The most significant characteristics of distributed memory systems are the individual ad-
dress space of each processor and explicit accessto the network viaprimitivessuchassend
and r ecei ve. The bandwidth of the network in these architectures has traditionally been
less than that of shared memory machines—often an order of magnitude less than those of
bus-based shared memory machines—and often varies among different pairs of processors.
However, as aresult, these architectures are considered more scalable than shared mem-

Processor/ Processor/ Processor/
Memory Memory Memory

Interconnection Network

Figure 2.2 Distributed memory multiprocessor

1

ory architectures. Machines of thistype have been built with thousands of processors. The
lower bandwidth of the network meansthat algorithmsthat perform well on shared memory
machines may perform poorly on distributed memory architectures, if a naive mapping of
shared memory reference to distributed memory communication primitive is used.

2.1.3 Distributed shared memory

In the last decade, a new architecture has been developed using techniques borrowed
from both the pure shared memory and pure distributed memory architectures. This archi-
tecture uses hardware components similar to those devel oped for purely distributed memory
to implement alow-level programming model that mirrors shared memory. Though an in-
terconnection network is used, the hardware does not support explicit send andr ecei ve
primitives. Instead, the low-level programming model is a uniform address space, and the
hardware detects accesses to nhonlocal memory, sending the appropriate messages to gain
access to the necessary data. Consistency in these systemsis usually maintained viaacom-
bination of hardware and software in a mechanism called a directory [8]. Contemporary
machines in this class are nonuniform memory architecture (NUMA) machines such asthe
Stanford DASH [8] and cache-only memory architecture (COMA) machines such as the
KSR-1[7].

2.1.4 Hybrid shared and distributed memory

Hybrid architectures combine shared and distributed memory architectureswithout adopt-
ing acompletely shared or distributed model. Some processorswill share auniform address
space; otherwise, communication requires explicit sends and r ecei ves (Figure 2.3).
With the recent concurrent growth in workstation clusters and desktop multiprocessors, hy-
brid machines are becoming ubiquitous. Furthermore, massively parallel processor (MPP)
manufactures are beginning to consider hybrid architectures for their machines; the Intel
Paragon supports configurations which have shared memory multiprocessors at each node
within the mesh interconnect [9].

2.2 High-level Programming Models

Inthiscontext, “high-level” indicatesthe programming model to which an applicationis
written; this may differ from the model used by the underlying operating system. The pro-
gramming model can be broken into two components, acommunication model and athread

12

Shared Memory Subsystem
Processor Processor Processor
I I I
Interconnection Network
1 1 1
Memory Memory Memory
Interconnection Network
Memory Memory Memory
I I I
Interconnection Network
1 1 1
Processor Processor Processor
Shared Memory Subsystem

Figure 2.3 Hybrid multiprocessor

model. Though a complete model requires aspects of both components, separate consid-
eration of the components helps clarify the issues while illustrating the space of complete
models. While only a few combinations are currently in use, amost any combination of
communication and thread models can form a new complete programming model. These
models are high-level and thus with proper software support could be implemented on any
of the hardware architectures described in the previous section, abeit possibly at higher cost
if the programming and hardware models are dissimilar.

2.2.1 Communication model

The communication model defines how the “threads” of a program coordinate datain-
terchange amongst themselves. Though we use the term ‘thread’ in this section, we defer
definition to Subsection 2.2.2. For the purposes of this subsection, threads may be consid-
ered an active execution environment (stack) that viesfor processor timewith other threads.

13
2.2.1.1 Shared memory

In the shared memory programming model, the application sees a single flat address
space. Communicationisimplicit, through accessto shared variables. To fully support such
amodel, amethod of interprocessor synchronization is necessary, usually implemented at
thelowest level viaatomic operationssuch ast est - and- set or through higher-level ab-
stractions such as barriers. The exact semantics of synchronization, i.e., busy-wait versus
rescheduling, cannot be defined precisely without reference to a thread model.

Specifying the exact semantics of shared memory machinesis complicated by the exis-
tence of different consistency models. With hardware support for caching and load/storere-
ordering, themost conservative model of shared dataconsistency, sequential consistency[10],
isprohibitively expensive. Thus, in addition to the uniform address space, a shared memory
model must explicitly define the aspects, both deterministic and nondeterministic, of access
to shared memory.

An example of shared memory communication is shown in Figure 2.4. In the figure,
two threads access two shared integer variables, a and b. Because the model specifies a
uniform address space, the variables exist at the same addresses in both threads. Thefigure
demonstrates the consistency problem. While the first thread storesfiveinto a followed by
storingteninto b, itispossible, under existing consistency models, for the second thread to
see the change to b before seeing the change to a.

Before:
a=1 b=2;, ¢c=3;, d=4

Thread 1 Thread 2

/ {
5; b;
10; d = a;

' '

After: one of

a c
b

a=5 b=10, ¢ =10; d =5
a=>5 b=10, ¢c =10; d = 1;
a=>5 b=120; c = ; d =5
a=>5 b=10; c = ;d =1

Figure 2.4 Communication and consistency in shared memory

14
2.2.1.2 Distributed memory

In the distributed memory model, asend primitiveis used to send datafrom one thread
toanother thread. Anexplicitr ecei ve operation must be executed beforethedataisavail-
ableto thereceiving thread. Figure 2.5 shows two possible ways communication can occur
in adistributed memory model. Inthe blocking case, thesend operation does not complete
until the corresponding r ecei ve operation has begun. Thisstyle of communicationisone
of the types supported by the Thinking Machines CM-5 CMMD library [11]. In the non-
blocking case, the send operation completes when the necessary data are copied out of the
application buffer; it is not necessary that the corresponding r ecei ve be executed. This
type of communication is common on Intel multicomputers[12]. Variations on communi-
cations primitives provide for broadcasting, multicasting, synchronous and asynchronous
communication, and typed messages.

2.2.2 Thread models

There are two principal thread models, physical and virtual.

2.2.2.1 Physical threads

In a physical thread model, the thread, as seen by the application, is a processing ele-
ment and is generally available for “exclusive’ use by the application; if the code running
on athread executes a blocking call, the entire thread is blocked for the duration of the call.
The physical model includesthose systems which provide more threads than processors but
for which the application cannot rely on the ability of the underlying run time library to ef-
ficiently handle anumber of threads vastly greater than the number of available processors.

Thread 1 Thread 2 Thread 1 Thread 2

time

Blocking Non-blocking

send l receive send l receive

Figure 2.5 Communication on distributed memory architectures

15
2.2.2.2 Virtual threads

In avirtua thread model, the number of threads visible to the program is typically not
related to the number of processing elements. Applications developers think in terms of a
number of threads convenient for the application at hand. It isthe responsibility of the un-
derlying language and run time support to map these virtual threadsto physical processors.
When a virtual thread blocks, it is expected that the underlying run time support will find
another virtual thread to schedule. This model is often referred to as light-weight threads.

2.2.3 Complete models

A complete model is created by combining acommunication model with athread model
and then specifying the semantics of the interaction between the two components. We con-
sider three compl ete high-level models; many more are possible, but the examples serveto
demonstrate the issues involved.

2.2.3.1 Unix shared memory multiprocessor

Themodel generally found on Unix shared memory machi nes combines shared memory
communication and physical thread components. The underlying consistency model isthat
of the underlying hardware and varies from architecture to architecture. The model is con-
sidered physically threaded, because Unix operating systems—in particul ar, the scheduler—
typically do not perform well when the number of kernel-scheduled threads is far greater
than the number of processors, e.g., 100 times or more.

2.2.3.2 MPI

The Message Passing Interface (MPI) is a send-receive model recently standardized by
a consortium of manufactures and users [13]. The model is similar to the programming in-
terfaces on the Intel iPSC and Paragon multicomputers and those supplied by libraries such
as PVM [14] and Express[15].

The basic model provides a send-receive interface atop a physically threaded model.
Programs written for this model are written for a fixed number of processors. While they
can be parameterized by the size of the machine, the model provideslittle or no support for
context switching of a physical thread over multiple virtual threads.

16

In MPI, the basi ¢ send-receive model isaugmented with such conceptsas process groups
and environments, which makestheinterface more applicableto virtual threads. Experience
with this advanced virtual thread interface on distributed memory systemsis limited.

2.2.3.3 Actors

The actor model is based on continuation passing [16] using virtua threads. From the
application viewpoint, an actor is an object with its own thread of control that at most times
is blocked waiting for a message—a continuation execution of one of its methods.

Continuation passing resembles message passing but omits the explicit receive opera-
tion. Instead, each message sent contains enough information to determine the action to be
invoked by the receiver. In thisway, the model is similar to active messages [17].

The actor model combines continuation passing with a virtual thread model. Most of
the time, the thread associated with an actor is blocked awaiting the continuation execution
of one of its methods. When a continuation destined for the actor is executed, the appro-
priate member function is executed. As part of the execution, the actor may execute other
continuations, create new actors, or perform computations, possibly with side effects.

Inaparallel context, continuations express parallelism; the call to a continuation returns
after scheduling the future execution of the continuation body rather than synchronizing
with the actual execution. Since every actor has a thread and an actor is simply a concur-
rent object, actor programstypically havethousands, if not hundreds of thousands, of virtual
threads. Thus, the virtual thread mechanism used by an actor implementation must be effi-
cient.

As the actor model is the model adopted in this work, further discussion and examples
are deferred until discussion of the Actor Interface in Chapter 3.

2.3 Implementation Architectures

Many of the choices made in the development of the characteristics of the interface in
thiswork involved consideration of what devel opers of the applicationsin thetargeted fields
would need and like. A study of theseissuesis presented by Pancake et al. [18], [19]; while
their work was centered on scientific problems, with a few exceptions their observations
and conclusions are equally applicable to other problem domains. We borrow from their
discussion, as we consider the characteristics desirablein VLSl CAD and similar domains.

17
2.3.1 Algorithm classifications

2.3.1.1 Regular versus irregular

Regular applications are those whose computation demonstrates a regular pattern, i.e.,
the iteration of alarge number of operations on large contiguous regions of memory with
little change in control flow or memory access patterns. Examples are signal processing
applications which compute fast Fourier transforms and other transforms on dense arrays
of raw data.

In contrast, irregular problems do not deal with dense contiguous data structures. This
class includes not only algorithms defined on completely arbitrary data structures but also
algorithmswhich have ahigh degree of conceptual regularity but alow degree of regularity
in implementation. Among thislater class are sparse matrix operations; while the multipli-
cation of two sparse matrices is at a high level a regular operation, in terms of low-level
operations, control and data access patterns differ significantly from that of the analogous
dense operation. Typically, the metric used to differentiate regular from irregular isthe ap-
plicability of vector operations.

2.3.1.2 Structured versus unstructured

For our purposes, we define unstructured problems as those that are not naturally ex-
pressible as operations on (possibly sparse) vectors and matrices or through iterative solu-
tion of anumber of conceptually identical problems. Thus, while a sparse matrix operation
isnot aregular operation, it is highly structured; the operation can be succinctly described
asasimpleiteration over two graphs.

In contrast, unstructured problems are those for which anumber of heterogeneous tasks
must be performed. For example, inaCAD application, it may be necessary to concurrently
process cost estimation tasks, database update tasks, and global status coherence tasks. The
number of unstructured problems implemented only on uniprocessor is large; the area of
CAD for VLS circuitsis dominated by such applications.

2.3.1.3 Numeric versus non-numeric

Traditionally concurrent processing has been applied to predominately numeric appli-
cations. For example, physical modeling tasks are well represented in current parallel pro-
cessing applications. These applications tend to be dominated by floating point operations
on data representing physical quantities.

18

While there are a number of problems involving physical modeling in the domain of
VLS| CAD, theareaisdominated by applicationsfor which floating point operations do not
predominate. These applications, such aslogic synthesis, test generation, and logic simula-
tion, aretightly tied to thelogic model of digital circuitsand tend to be dominated by integer
and logic instructions.

2.3.1.4 Fine-grain versus medium-grain versus coarse-grain

Thegranularity of aparallel algorithm refersto therelative ratio of computation to com-
mutation. A fine-grain application expresses far more concurrency and utilizes far more
communication than a medium-grain application. It isdifficult to affix alabel to any partic-
ular algorithm, since these terms are largely relative. We choose to describe our approach
as applicable to medium-grain concurrency and to describe the most useful distinctions be-
tween fine- and coarse-grain without reference to instruction counts.

Fine-grain applications are thosefor which virtually every operationisconcurrent. This
concurrency may be implied by data distribution asin adata parallel context or by implicit
concurrency in all operations as in the actor model.

We consider coarse-grain parallel algorithmsto bethosewhich either limit the number of
effectively processed concurrent tasks to the number of physical processorsin the machine
or for which the communications protocol implies crossing a protection boundary. Thus,
an algorithm that is coarse-grained generally iswritten explicitly in terms of the size of the
machine, i.e., it is physically threaded, or expects intervention in communication asis the
case for distributed processing viaremote procedure calls (RPCs) [20].

Essentially, applications which do not fit either of the previous two categories may be
considered medium-grain, and thus many systems can be considered medium grain. The
predominant characteristics of medium grain would then be:

e existence of amixture of concurrent and nonconcurrent objects with concern for ef-
ficiency as the number of concurrent objects grows.

e an assumption of efficiency in communication, i.e., when possible, communication
among concurrent tasks should be on the order of afunction call in aserial language.

19
2.3.2 Interface levels

2.3.2.1 Low-level

A low-level model essentialy reflects the underlying hardware with little or no abstrac-
tion. Such amodel is clearly not architecture-independent.

2.3.2.2 High-level

A high-level model provides a degree of distance or abstraction from the underlying
hardware. A high-level model should be implementable across arange of architectures, a-
though with varying degrees of efficiency. While high-level models are conceptually very
attractive, they may suffer from greater overheads and may inhibit some kinds of optimiza-
tions.

2.3.2.3 Mixed-level

Because high-level interfaces either incur too much overhead or because a degree of
architectural tuning is required, many have been been augmented with low-level features,
whichleadsto amixed-level interface. While mitigating the disadvantages of apurely high-
level model, amixed model can become difficult to understand and manage [18].

2.3.2.4 Multiple levels

Rather than mixing high- and low-level features, two models can be provided, one high
and one low, with a well-defined interface. This combination of models should provide
greater flexibility than a purely high-level model while hel ping minimize the confusion re-
sulting from a single interface with arbitrarily mixed abstractions.

2.3.3 Expression of parallelism

One can view the gamut of parallelism as a one-dimensional space with extremes rep-
resenting completely serial and completely parallel programs. This situation is portrayed
graphically in Figure 2.6, where arrows indicate increasing programmer effort.

If we consider, for example, the MPI and actor programming styles, we see that they lie
on opposite ends of the parallelism spectrum. If we consider a send-receive code that sends
two messagesfrom athread A to athread B, in the most straightforward, synchronous case,
paralelism is decreased by the imperativer ecei ve primitive:

20

Serial
| Actor Model |
| Send-Receive Model - |
Completely
Parallel
Figure 2.6 Spectrum of parallelism
/1 Thread 1 /1 Thread 2
send(2, typel, datal); recei ve(typel, datal);
send(2, type2, data2); recei ve(type2, data?);

Even if the semantics of the application may alow the messagesto be processed in any or-
der, the underlying model requires that the messages be received in the order sent, and the
serial nature of code execution implies that one receive must precede the other. Though
it is possible to express unordered reception via asynchronous send and r ecei ve prim-
itives, such code is significantly more difficult to write. Thus, the basic MPI interface is
represented at the left of the parallelism spectrum; the devel oper must apply more effort to
express greater paralelism.

In the actor model, message reception may occur as long as the actor isnot processing a
prior message. In contrast to the MPI case above, the actor will receive whichever message
arrives at the actor thread first. Thereis, however, adua of the MPI case; if thereisadepen-
dence constraint on message processing, the actor must handle the case in which message
reception order isreversed. In thiscase, the actor must delay processing of the second mes-
sage until thefirst isreceived and processed. Thus, the actor model starts at the completely
paralel end of the spectrum and requires that the programmer apply more effort to express
less parallelism. The extreme amount of parallelism in an actor program can sometimes
lead to difficulty in programming. To remedy this problem, most actor languages include
constructs for shifting order maintenance from the programmer to the run time system. As
will be seenin Chapter 3, combing the actor model with an imperativelanguage such as Ct+
also serves to simplify the expression of parallelism without putting an unacceptably large
burden on the devel oper.

2.3.4 Concurrency expression

There are anumber of methodsfor expressing concurrency inwide use; among the most
popular are data parallelism, task parallelism, and actor parallelism.

21
2.3.4.1 Data parallelism

In data parallelism, parallelism is implicit in certain data structures, usually in arrays.
Operations on arrays implicitly imply paralelism; it is the responsibility of the compiler
and run time support to implement the parallelism. Data parallelism is most often applied
to dense arrays but also may be applied to sparse data structures.

2.3.4.2 Task parallelism

In task parallelism, parallelism is explicit, usualy in the form of aparallel par f or or
dowhi | e construct or an imperative spawn. In these cases, the body of the loop or the
target of the spawn is performed concurrently with other parts of the computation. These
types of parallel expression imply adegree of linkage between concurrency and the lexical
structure of the program.

2.3.4.3 Actor parallelism

In actor parallelism, the unit of concurrency isthe actor, which is aso the unit of inter-
ference control. Concurrency in an actor program is implicit in the semantics of the actor
model. Interprocess communication is expressed via continuation execution, an extension
of the member function execution mechanism of serial object-oriented languages. Thereare
no imperative constructs for parallelization or synchronization similar to the par f or and
barri er primitivestypicaly found in task parallelism.

2.3.5 Method of implementation

Pancake and Bergmark classify interfaces as concurrent languages, language extensions,
and run time libraries [18].

2.3.5.1 Languages

Language implementations provide the greatest flexibility but have the drawback of re-
quiring more effort in development and maintenance of implementation, higher costs in
training efforts, sacrifice of existing code, and inability to overcome inertia of existing us-
age. In the case of concurrent languages, a significant amount of effort can be required to
specify the syntax and semantics of seria portions of the language, which detracts from the
effort to address issues of concurrency.

22

2.3.5.2 Language extensions

L anguage extensions mitigate, but do not eliminate, the difficulties of language imple-
mentations. An extension of an existing language represents less flexibility in expression
but gains greater ability to utilize existing technologies in implementation. Training and
adoption difficulties are fewer than in the language cases, but they are still significant.

2.3.5.3 Llibraries

Libraries provide the lowest startup costs, but they do so at the cost of least flexibility in
expression and often the most effort in expressing paralelism. On the other hand, libraries
provide the greatest ability to coexist with existing libraries and devel opment tools.

2.4 Composability

Of particular interest in thiswork isthe ease of composability, the process of taking two
existing modules for solving subproblems of a computation and combining them into asin-
gle application to solve a more complicated problem. For example, an application might
require the use of alinear system solver and a matrix multiplication package. In this ex-
ample, the implementation and component packages are composableif it is possibleto take
existing modulesfor the solver and multiplication tasks and use them, without modification,
to solve the appropriate subproblems.

In composability, physical thread-based models tend to fall short of the virtual tech-
niques because partitioning, usually static, of available processorsis required. Designers
of distributed memory interfaces such as MPI are implementing ways of solving this prob-
lem, but as yet there are few examples of such features.

Implementations of the actor model, being based on a virtua thread model, implicitly
perform load balancing when a new actor is created. Thus, if an actor type exists for each
of the solver and multiplication problems, an actor can be created for each problem without
interfering with the other. It isthe task of the run time system to load balance and schedule
the actors to take advantage of available processing elements.

Figure 2.7 showsthe difference between typical message passing and actor implementa-
tionsof thelinear system solver and matrix multiplication problems. In the message passing
case, we assume that a procedure exists for each subproblem and that each procedure was
designed assuming full use of the parallel machine. Each of the two subproblemsis solved
internally in parallel, but the two subproblems are sequentially ordered with barriers. Inthe

23

Barrier

]

ot]

P2

]
<]

Iy T TR
Fri s

5

o
i

B
ki

e

b
ki

o
i

5

&
i

g
&
b

o
B

P1

!

!
A

o
o

bt

[
i

Barrier

PO

Barrier

2

i

P

ittt

P1

Barrier
Barrier

BAEAERERRERERERERRan

PO

o

ing prim-

d actor models

iers.

Actor

-recelve dn
though an actor model does not have block

Figure 2.7 Composability in send

Send-Receive
, the sequence of continuation executions can effectively creates barr

, the subproblem actors, are created concurrently and are synchronized only when the

two operations are completed! which may result is higher processor efficiency.

! The barriersshownin the actor example are abstract

sion

actor case, since each subproblem is represented by an actor, the two actors, and by exten-

ITIVesS,

24
2.5 A Class Library Approach

In thiswork, we present an interface and implementation for scal able concurrent object-
oriented programming which is applicable to the irregular and unstructured problems of
which VLSI CAD problems are representative. This section presents the major character-
istics of theinterface.

2.5.1 Scalability

Theinterface and implementation are applicableto awiderange of machines, fromsmall
shared memory workstations, through workstation clusters, to massively parallel processors
(MPPs). By supporting small machines and workstation clusters as well as MPP architec-
tures, we are able to facilitate near-term use on existing workstation clusters while at the
same time enabling the exploration of the application of MPP architectures to CAD prob-
lems.

2.5.2 Seamlessness

Theinterface isuniform across all supported architectures, from workstationsto MPPs.
This uniformity enables the exploration of concurrency using small machines and clusters
while at the same time providing a continuous migration path to M PP machines. Develop-
ment of CAD applications based on the environment allows experimentation across awider
range of architectures than has previously been possible.

2.5.3 Multi-level abstraction

We have devel oped amulti-level abstraction based ontwo models. Thehigh-level model,
the actor interface, is capable of expressing actor operationsthat are easily implemented on
virtually any machine, though at costs that will vary from architecture to architecture. The
actor interfaceitself isimplemented viaawell-defined low-level model, the abstract parallel
architecture, which captures details such as address space distribution while still unifying
other architecture and vendor-specific details. Use of the actor interface does not preclude
direct accessto the abstract architecture interface. Furthermore, the actor interface has been
carefully augmented to express several of themost common architecture-dependent features
commonly used for data distribution.

25
2.5.4 Medium-grain parallelism

Because the high-level actor interface augmentsthe native Ct interface, an application
designed has the ability to express serial computation using only native Ctt constructs and
paralel computation viathe library interface.

2.5.5 Class library interface and implementation

The interface, implemented as alibrary in the Ctt programming language, enables the
continued use of existing development tools, e.g., compilers and debuggers. The use of the
Ct+t language enables migration from existing C and C++ codes that predominatein VLSI
CAD. The library approach has had the added benefit of forcing a tighter integration with
the serial language, agoa whichisdecidedly difficult to attain [18]. It also facilitatesincre-
mental paralelism in two ways. First, the library approach described implies that a serial
program with no callsto thelibrary isadegeneratelibrary client. Incrementally greater par-
allelism is expressed by adding additional library primitives. Second, we implement paral-
lelismviaderivation; in avery rea sense, the paralel application isderived from the serial
application. By applying paralelism via derivation—the dynamic-binding mechanism in
Ct+—itispossibleto share object code and to limit perturbation of the original serial code.

2.6 Other Models and Implementations

In this section, we survey and briefly compare the approaches represented in this work
to nonactor models and implementations. Other actor approaches are considered in Sec-
tion 3.6.

2.6.1 pCH+

Gannon and Lee [21], [22], [23], [24] have developed pCt, an extension of Ct+ with
support for distributed data structuressimilar to FORTRAN D. The pCtt language provides
support for distributed collections, both array-based and tree-based, of arbitrary types and
with full support for the Ct+ mechanisms of derivation and dynamic-binding [21]. In their
data paralel model, a data structure, usually an array, is distributed across processorsin a
regular manner. Thistype of expression is natural in scientific computing where many al-
gorithms are described as operations on arrays. It isdifficult to hypothesize how one would
implement the unstructured applicationsin VLSl CAD ontop of adataparallel model. The

26

difficulty of expressing these tasks in terms of data parallelism reinforces the necessity to
choose the correct tool for the correct problem.

2.6.2 CCHt

Compositional Ctt+, or CCH, proposed by Chandy and Kesselman [25] takes a task
parallelism approach to concurrency. Where in pCt+, processor control is implicit in the
paralel data structures, in CCt, parallelism is achieved though par and par f or primi-
tiveswhich cause code blocks to be performed concurrently in different processing threads.
CCtt also provides anumber of synchronization primitives necessary for athread-oriented
programming interface.

Toexpress VLSl CAD applicationsin termsof task parallelism, applicationsare broken
into a number of similarly sized tasks. The greatest difficulty in applying thistechniqueis
the necessity to guide the ordering of task execution; often parallel CAD algorithms are
sensitive to ordering of execution. Task parallelism generally does not provide a priority
mechanism. Furthermore, many task parallelism implementationsare tuned for caseswhere
the degree of parallelism expressed is on the order of the number of threads in the machine.
In this situation, a master-slave model would often be required to maintain an ordered list
of tasks. Thislightweight scheduling isimplicit in the actor interface.

As is the case for data parallelism, there are problems for which task parallelism and
CC*+ more closely match the most intuitive solution. In particular, while features such as
implicit barriers and futures can be expressed with continuations, such expression may be
cumbersome. Applicationsthat rely heavily on these operations could betediousto translate
to continuation passing style.

263 IC-C++

Recently, avariant of Ct, lllinoisConcert Ct+ or |C-Ct, hasbeen proposed asamethod
for the expression of fine-grain concurrency in Ctt [26]. IC-CH istargeted at massively
paralel machines and applications with a high degree of concurrency. 1C-C*t+ defines a
concurrent semantics for most Ct primitives and operations, which enables the easy ex-
pression of a high degree of concurrency. The work on IC-C++ borrows from the compiler
analysis technologies in the Concert system [27].

27
2.6.4 ES-Kit

The Experimental Systems Kernel, or ES-kit, of Leddy and Smith [28] isimplemented
viamodificationsto an existing Ct*+ compiler and as such tries to stay true to the spirit and
syntax of Ct*. In ES-kit, pointers are extended to represent aglobal namespace, and remote
execution is represented by the execution of a method call though a pointer to a nonlocal
address. Object distributioniseither automatic or under program control viathe Ct+ place-
ment syntax [29]. Parallelism in ES-kit is specified through the use of remote function calls
and futures [30]. The original target of the ES-Kit was specia purpose hardware.

2.6.5 Amber

The Amber system [31], derived from Presto [32], is an extension of Ct+, viaa prepro-
cessor and a supporting run time library, targeted specifically toward workstation clusters
running the Topaz operating system [33]. In Amber, the approach is to explicitly locate a
shared datum on a particular node and then to cluster Topaz threads on that node. When ac-
cessis made to aremote node, the run time system traps to the Amber kernel and the thread
of control istransferred to the processor on which the data value resides.

2.6.6 COOL

COOL, devel oped by Chandra, Gupta, and Hennessy [34], isal so based on thread-explicit
extensionsto Ct, in this case targeted toward shared memory architecturesin general and
toward the DASH architecture in particular. COOL provides afull range of classical syn-
chronization constructs. Of particular interestin COOL istheability to represent the affinity
of different objects, which isnecessary to achieve high processor utilizationin DASH’sdis-
tributed shared memory architecture.

2.6.7 Linda

Linda, developed by Carriero and Gelernter [35], [36], represents a high-level approach
to concurrent processing. In Linda, shared data are represented by a shared tuple-space to
which al functions have access. Elements in the tuple-space are lists of values. Access
to the space is via pattern matching on one or more elements of atuple. This formulation
has particular benefit in logic-programming and artificial intelligence and was one of the
motivationsfor the development of ActorSpaces[37], [38], an extension to the actor mode!.

28

Linda has been applied to coarse-grain VLS| applications [39] and implemented on a
number of architectures [39], [40], including an implementation that runs atop PVM [14]
and thus runs on any cluster of machines supported by PVM [41].

Linda was specificaly designed as a coordination language to be added to a computa-
tion language [35], which is both an advantage and a disadvantage. While it allows easy
separation of control flow from data flow, this separation violates the object model and thus
limits application in object-oriented environments.

2.6.8 Concurrent C++

Concurrent C+t, developed by Gehani and Roome [42], [43], is another extension of
Ct*. In Concurrent Ct*, processes communicate via transactions that can be either block-
ing or nonblocking. Process bodiesin Concurrent Ct are represented by functions, gener-
ally with an infinite loop representing the way the process handles events. Concurrent C++
has been implemented on uniprocessors, workstation clusters, and shared memory multi-
processors [43].

2.6.9 Jade

Jade is a high-level language for coarse-grain concurrency [44]. Jade uses a single ad-
dress space model for communication with explicit declaration of data dependencies; the
overal model isoneof task parallelism. Jade has been implemented asan extension of theC
programming language on shared and distributed memory machines and on heterogeneous
workstation clusters.

2.6.10 Mentat

Mentat, developed at the University of Virginia[45], [46], isan environment for coarse-
grain parallel application development. The Mentat language is derived from C++ and in-
cludes support for explicitly identified parallel class types. One of the more interesting as-
pects of Mentat isthe run timetracking and enforcement of datadependencies. The coarse-
grain nature of Mentat stemsfrom the fact that al active classesin Mentat have separate ad-
dress spaces; the operating system overhead required to implement separate address spaces
generally precludes alarge number of objects.

29
26.11 uCH

Buhr et al. [47] developed uCt by adding four classical concurrency abstractions to
Ct*: coroutines, monitors, coroutine-monitor, and task. Thecommunicationmodel inuC++
is a single address space, and implementations support only shared memory multiproces-
sors. Threads are represented in uCH by special, explicitly declared coroutine class types.
In addition to mutex and other synchronization types, uC*t+ alows for conditional accep-
tance of communication, al of which occurs via member function calls. Thread context
switches in the current uCt implementation occur at the user level without the necessity
for operating system calls.

2.6.12 Paragon

The Paragon project of Chase, Cheung, Reeves and Smith [48] is implemented via a
Ct* library for the support of distributed data structures. Support isprovided for distributed
arrays, both through partitioning and replication. Paragon also provides permutation and
reduction operators as well as anumber of interesting conditional structures for expressing
gpatial and temporal distribution.

2.6.13 CA/CHt+

CA/CHt, for Concurrency Annotationsin Ct+, isamethod for representing concurrency
in Ctt programs through the addition of a set of annotations [49]. Annotations, similar in
structureto classes, are written to identify the concurrency characteristics of normal classes,
for example the set of pre- and postconditions necessary for a method call to be available
for scheduling. Annotation objects can have their own states separate from the object they
specify. CA/Ct is applicable to shared memory architectures and has been implemented
on Sun multiprocessors using Solaris 2 threads.

2.6.14 POOL-T

POOL-T, developed by America[50], isbased on message passing but uses synchronous
message passing rather than the asynchronous message passing of actors. POOL-T is tar-
geted particularly toward large system devel opment on medium-parallelism architectures (4
to 1000 processing el ements) and was devel oped with an interest in applying forma meth-
ods for proving program correctness.

30

Chapter 3
THE ACTOR INTERFACE

The Actor Interface (AIF) provides a high-level interface for expressing concurrency.
The purpose of the high-level interface isto insulate the application—and by extension, the
devel oper—from the details of the underlying hardware without reducing parallelism. The
AlFisbased closely onthe Actor model [51] and supports such extensions as aggregates [5]
and meta-programmability. In this chapter, we consider the basic actor interface; in Chap-
ter 5, we consider advanced meta-programmability features which facilitate tuning the op-
eration and performance of the run time support. To exemplify use of the Actor Interface,
wewill useexamplesfrom Pr oper HI TEC, aparallel version of the Hl TECapplication for
sequential test generation [52]. Completedetailsof thePr oper HI TECimplementationare
deferred to Chapter 6.

3.1 Actors and Continuation Passing Style

The fundamental object in the Actor model [51], [53] is the actor, an object that com-
municates with other actors by sending messages. Message delivery in an Actor systemis
reliable, unordered, and fair. All actions an actor performs are in response to messages;
when amessage is received, the receiving actor may send messages to other actors, create
new actors, and change its local state (Figure 3.1). Thereis a close relationship between
sending messages in the Actor model and calling a remote procedure in the RPC model of
distributed programming [20]. Because messages automatically invoke amethod of thetar-
get actor when received, the actor send operation more closely resembles a remote proce-
dure call than it does a send operation in a send-receive programming model.

The actor model lacks explicit sequencing primitives. Synchronization isimplicit and
derivesfrom the single-threaded nature of individual actors. Thereturn executed at thecom-

Figure 3.2 RPC and Actors/CPS

32

executes ar et ur n, the run time on the remote node marshals the return value and sends
it to the local node which unmarshals it and continues f . Because RPC calls block, RPC
represents distributed programming, programming with a single thread of control in multi-
ple address spaces; the RPC model itself does not express parallelism. The marshaling of
argumentsimpliesthat RPC is call-by-value.

The Actor/CPS case extends the RPC model to support parallelism and object-oriented
programming. Because the model is object-oriented, all functions are member functions
and must be invoked with respect to an actor; the callsto f and g are made with respect
to objectsa and b, respectively. The actor becomes the unit of synchronization: each actor
hasits own (light-weight) thread; methods of different actors may execute concurrently, but
only one method of an individua actor may be executed at atime.

Like RPC, actor methods have call-by-value semantics; unlike RPC, the call of an actor
method is not a blocking operation. Asaresult, an actor method does not return avaue. In
the figure, thef member of actor a calls the g member of b but does not wait. Instead, a
continuationis passed as an argument to g. Thecontinuationthat f passes, a. f ' , specifies
that the object a and the codef ’ will processthevauereturned by g. Thefunction g treats
the continuation ¢ as a function pointer; when the return value x is computed, g calls the
continuation ¢ with that value. Continuation variables are the parallel, object-oriented ex-
trapolation of serial, procedural function pointers. The figure also illustrates several ways
the Actor model facilitates the overlap of computation and communication. Not only isthe
local processor freeto process other actor method invocationswhenf completes, but f may
invoke b. g as soon as the necessary arguments are available. If f has significant compu-
tation to perform that does not depend on the value computed by g, the execution of that
computation may occur concurrently with the computation of g.

3.2 Concurrent Objects

3.2.1 Actortypes

The library supports user-specified actor types derived from a common class, Act or
provided by the library. The protected and public interface to the Act or class are shown
in Interface 3.1.! Implementation of actor types can be performed in two ways; either viaa
change to an existing class or viainheritance. For example, the main test generator object

In this and other interfaces resented in this work, the C++ code has been simplified for clarity. Private
interfaces are always omitted and often protected interfaces are omitted as well. Implementation details that
do not contribute to understanding are omitted.

33

Intferface 3.1 cl ass Act or

cl ass Actor

{

pr ot ect ed:
Actor();
virtual “Actor();

virtual void termnate();

inH TECistheW ndowclass. To create aparallel test generator, we could modify HI TEC
to make the W ndow object an actor:

cl ass Wndow : public Actor ({

1
This, however, requires an incompatible modification of the serial application. Instead, we
choose to define a new type, which is both an actor type and aW ndow:
cl ass Test CGenerator : public Actor,
public W ndow {
1

Adding the Act or baseto a class enables the creation of actor methods, actor names,
and continuations, described below. Parallelization through derivation was developed inre-
sponse to one of the major goals of thiswork: to provide a method of parallelization which
does not require backwardly incompatible changesto the serial code. Because Ct specifies
static binding for nonvirtual functions[29], it may be necessary to modify the origina serial
code to enable effective use of derivation. However, such use of dynamic binding is at the
center of object-oriented programming and is generally not objectionable. In some cases,
care may be necessary in adding dynamic binding to existing functions; dynamic binding
incurs a fixed amount of overhead at function dispatch time, and in the core of some algo-
rithms this overhead can be significant.

There are no restrictions on the structure of actor classes; they may have public, pro-
tected, and private members, may be derived from other types including other actor types,
and may be used as class members. Parallelism and synchronization are expressed only
through the use Act or Nanes, Act or Met hods, and Cont i nuat i ons, described in
the sequel; member function calls and access to data members expressed via Ct+ pointers
occur as they do for any Ct object. This approach—the addition of methods for express-
ing parallelismwithout changing the meaning of native Ct+ constructs—istaken throughout

34

the interface design and implementation. Most uses of native Ct+ constructs are safein a
medium-grain parallel environment; rather than preclude many of these constructs because
they are potentially unsafe, adesign styleis supportedinwhich parallel constructsare added
when semantics in aparallel environment are undefined.

Thedternative approach, precluding the use of Ct* constructsfor whichitisimpossible
to assign parallel semantics, was never considered for anumber of reasons. First, alibrary-
based implementation has no way of enforcing the use or omission of nonlibrary constructs.
A particular a set of rules could have been specified, but such idiomatic usage would have
been unsafe and difficult to debug. Furthermore, each added restriction would result in ad-
ditional impediments to reuse of existing serial code. Finaly, such enforcement is rarely
successful; either the programmer can get around it or unsafe holes remain.

Because a parallel semanticsis only supplied for interface objects, the exact semantics
of some Ctt statementsis not defined. For example, if an application usesaglobal variable,
the interface does not define how many copies of that variable will exist.

3.2.2 Actor names

Actor names servetheroleof pointersfor instances of actor classes; unlike Ct+ pointers,
actor names are valid in the global namespace of a running program, independent of the
number, type, and interconnection of threads executing the application. Actor names are
manifest as alibrary-provided template class, Act or Nane. Act or Nanes are combined
with Act or Met hods to create Cont i nuat i ons. The Act or Nane interface is shown
in Interface 3.2.

In many parallel interfaces, global names are implemented as opague objects, with little
or no public interface other than that used in expressing communication. By contrast, in
the AIF, actor names are first class values with arich interface which facilitates their usein
paralel programming on contemporary architectures.

As one might expect, actor names may be created from a pointer to an actor object:

Test Generator* p = ...; /!l p points to an actor in this
/! address space. p is not
/1 necessarily valid on all
/1 threads: nachi ne-dependent

Act or Nane<Test Generator> nane = p; // nane is valid on any thread:
/1 machi ne-i ndependent

35

Interface 3.2 cl ass Act or Nane

tenpl ate <cl ass Type>
class ActorNane : public ActorNane<Generic>

{
publi c:

Act or Nane() ;

Act or Nane(cl ass Type&);

Act or Name(const Act or Name<Type>&);
“Act or Nane() ;

(class Type&);
(const Actor Nane<Type>&);

Act or Nanme<Type>& oper at or
Act or Nanme<Type>& oper at or

operator Type* () const;
Type* operator -> () const;

static ActorName<Type> newNane();

However, the inverse operation is also defined:

Act or Nane<Test Generator> name = ...; // a global nane

Test Generator* p = nane; /1 pwill point to the actor
/1 represented by nane if the
/1 actor is within the address
/1 space of the executing thread;
/1l else p=0

Thisstyleof name/pointer coercionissimilar in spirit to the pointer conversion operators
inthe Ct+ runtimetypefacility [54]. Act or Nanes support most of the operationsof C++
pointers and with much the same syntax. Other features of Act or Nanes are consideredin
the discussion of aggregates (Subsection 3.3.2) and advanced meta-programability features
(Chapter 5).

Actor names have anewNane() member which allocates a new name in the global
namespace that is unique and is not bound to any actor. This name can then be used when
anew actor is created to bind the new actor to the preallocated name. In thisway, any ac-
tor that creates a new actor may learn the name of the new actor. Moreover, by preallocat-
ing names, tightly coupled sets of actors can be created which know each others' names at
construction:?

2Because the syntax for calling methods and creating actors has not yet been presented, this example is
presented in pseudocode rather than in legal library code.

36

Actor Name a = newNane(), b = newNane();
create actor a (b);
create actor b (a);

In the absence of the separation of the operation of creating names and actors, it becomes
necessary to create the first actor, to create the second with the name of the first, and then

to communi cate the name of the second to the first:
Act or Nane a, b;
a = new actor;
b = new actor (a);
send b to a;

Not only isthislatter method more clumsy, it violates an invariant popular in Ct+ in which
instances are constructed only when all necessary arguments are available [29].

When names are created separately from actors, communication becomes uncoupled in
both time and space. A name may be created, exchanged, and used as the destination of
communication all without regard for where or when the actor will be bound to the name.
Name creation is a distributed process that requires no global communication.

Aside from the newName() member, only actors themselves can directly learn their
names. The ability to restrict indiscriminate distribution of actor namesis useful in reason-
ing about system behavior [51]; when it can be proven a name does not escape a set of ac-
tors, it can be guaranteed that the actor of that name cannot be influenced directly by actors
outside the set.

3.2.3 Actor methods and continuations

Act or Met hods are member functionswhich may beinvoked asynchronously and re-
motely. Act or Met hods are executed viaCont i nuat i ons, the object-oriented, paral-
lel extension of member function pointers. An actor method is a member function of an
actor classthat has been declared to be call able through a continuation viathe addition of a
reference to alibrary-provided Act or Met hod class. For example, in Pr oper Hl TEC, a
Vect or s actor typeiscreated through derivation fromthe Hl TECVect or St at es class
and the library Act or class. The new Vect or s inherits a member function, t est . The
t est member of the vector database class Vect or s iscaled by Test Gener at or ac-

tors. To enable calling the member function, a nested class of the same name is defined:

class Vectors : public Actor
public VectorStates {

class test : public ActorMethod<VectorlList>
{ Actor Met hodOf (VectorList); };
void test(const VectorList&);

37

The nested class with the same name as the normal C++ member enables the creation of
continuations that take avalue of type Vect or Li st as aparameter. When such a contin-
uationisexecuted, thet est member function will be scheduled for execution. The binding
type of the C++ member function—dynamic for vi r t ual members, static otherwise—is
maintained.

The templated base class Act or Met hod and the macro Act or Met hodOf are pro-
vided by thelibrary; together they definenested Cont i nuat i on classes. Each actor method
classdefinesanested Cont i nuat i on type, theinterface of whichisshownin Interface 3.3.
The symbols Act or Type and Met hodNane are replaced for each invocation, e.g., in
the case above, they would be Vect or St at es and t est , respectively. The Type pa
rameter isindicated by the template parameter of the Act or Met hod type, in the example
Vect or Li st. TheCont i nuat i on<Type> base classisprovided by thelibrary and is
considered in greater detail in Subsection 3.2.4.

A continuation is created by specifying an actor method and an actor name. Thet est
member may be called as:

Vectors::test::Continuation cont (vectorDB);
cont(vectors);

Thefirst line defines acontinuation cont , which when executed will call the member func-
tiont est for the object identified by thenamevect or DB. The second line calls the con-
tinuation with the vector list vect or s asan argument. Execution viacontinuationsdiffers
from normal member function execution:

e Executionisasynchronouswith respect tothecaller. Theactual execution of themem-
ber function occurs at some unspecified timein the future.

Inferface 3.3 cl ass Conti nuati on

cl ass ActorType:: Met hodNane: : Conti nuation : public Continuation<Type>
{
publi c:
Conti nuati on(ActorType&);
Conti nuation(const Actor Nane<Act or Type>&);
Conti nuation(const Continuation&);
virtual "“Continuation();

const Continuation& operator = (const Continuation&);
void operator () (const Type&) const;

38
¢ Dueto their asynchronous nature, continuation calls do not return a value.

To ensure type-safety, actor methods take only a single argument, indicated by the template
parameter of the Act or Met hod class. For casesinwhich multipleargumentsare required,
they are wrapped in a structure. Continuation execution is the sole method of expressing
concurrency in an actor program.

NewAct or Met hods provide similar functionality for constructors. A nested contin-
uation type is declared for each constructor. Returning to the Pr oper H TEC Vect or s

example, the NewAct or Met hod for the Vect or s classiswritten as:

class Vectors : public Actor,
public VectorStates {

struct Argurents { ... };

cl ass New : public NewAct or Met hod<Ar gunent s>
{ NewAct or Met hodOf (Argunents); };

voi d Vectors(const Arguments&);
1
When a new actor is created, no name is passed to the constructor:

Vectors:: New. : Conti nuation cont;
cont(Vectors::Argunents(...));

Inthiscase, the creating actor does not | earn the name of the new actor and can only commu-
nicate with it if it learns the name though some other form of communication. For an actor
to learn the name of the child it creates, it allocates anew name as described previously and

providesit as an optional argument to the new actor continuation:

Act or Name<Vect or s> name = Act or Nane<Vect or s>: : newNane() ;
Vectors:: New : Continuation cont (nane);
cont(Vectors::Argunents(...));

In this case, the creating actor may now use name to communicate with the new actor. As
with the nonconstructor counterpart, calling new actor continuations schedules creation of
the actor; the actor is not created immediately. Any messages sent to the actor before it
is created become pending, waiting for the construction. It is not required that the same
actor create the name and the actor. Once an actor nameiscreated withnewNamne() , it can
be used in creating normal method continuations. Again, these continuations, when called,
become pending until an actor is created with the allocated name as an argument to the new
actor continuation. New actor continuations take a number of other optional parameters
which allow the application to influence where the actor will be constructed. This type of
control falls under the topic of meta-programming—jprogramming the underlying run time
system—and is consider in Chapter 5.

39
3.24 Continuation passing

In the exampledescribed in Subsection 3.2.3, the continuationcont iscreated and called
directly; thus, the declaration of the Vect or s class must have been seen prior to that point.
Thisis an example of tight-coupling, in which the method caller is directly dependent on
the type of callee. While in the case of the test generator this level of dependency is not
of concern, in the more general case it can be a significant impediment. Code that calls a
continuation must be dependent only on the type of argument expected by the continuation;
it should be independent of the actor type and individual method which were used to create
the continuation.

We illustrate with a common example that is used in the CAD applications, a barrier.
When anumber of actions have to be completed before a subsequent operation is started, a
barrier is often used. A barrier actor would require two arguments to perform its function:
an integer indicating the number of events on which towait, and acontinuation that it would
call when the necessary events occurred. A client actor could then use the barrier:

Client::Mthod:: Continuation cont (*this);
Barrier::New : Continuation create;
create(Barrier::Argunents(4, cont));

Thefirst line of the example creates the continuation that the client code wants called, the
second line creates a continuation which will create the barrier actor, and thethird linecalls
the continuation with the number of events, four, and the continuation to call when those
events have occurred, cont . As mentioned previously, continuations take a single argu-
ment; thus, atrivial structure continuing the argumentsis constructed and passed.

The incompl eteness of the interface as presented isillustrated if we now attempt to de-
sign the implementation of the barrier class. Asillustrated, the Bar ri er constructor ex-
pects an argument of typeCl i ent : : Met hod: : Cont i nuati on. If wewereto design
the barrier with this expected argument, the class could not be used by any other type of
client; a new barrier class would be required for each type of client. Thislevel of depen-
dence effectively precludes composition.

To support composition, the library defines another, more generic templated continua-
tion type, Cont i nuat i on<Type> (Interface 3.4). Referring back to Interface 3.3, we
seethat Cont i nuat i on<Type> isthe base class of the nested continuation types. The
Cont i nuat i on<Type> class has an interface very similar to that of the nested contin-
uation type. The only difference isthe lack of public constructors except a copy construc-
tor which meansthat the only way aCont i nuat i on<Type> instance may be created is
from an existing Cont i nuat i on<Type> instance. Although this definition appears to

40

Interface 3.4 cl ass Conti nuati on<Type>

tenpl ate <cl ass Type>
class Continuation : public Continuation<Generic>

{
publi c:
Conti nuation(const Continuation<Type>&);
“Continuation();
const Conti nuati on<Type>& operator = (const Continuation<Type>&);
voi d operator () (const Type&) const;
void operator () (Value<Type>&) const;
b

be circular, because nested continuation types are derived from the templated types, they
can be used in those cases where areference to the base classis specified. Thus, Cont i n-
uat i on<Type> instances can be created by copying instances of nested continuations;
the run time support ensures that no type information islost in this operation.

In the example, aBar ri er actor can now be defined:

class Barrier : public Actor {
publi c:
struct Argunents { Argunents(int, const Continuation<Voi d>&);
i nt events; Continuation<Void> cont; };

cl ass New : NewAct or Met hod<Ar gurrent s>
{ NewAct or Met hodOf (Argunents); };

Barrier(const Argunents& arguments);

b

With this definition, the example client code works as shown. The client continuation type
Client::Mthod:: Continuation is created and then implicitly converted at the
call point to the basetype, Cont i nuat i on<Voi d>. Thus, thecall istype safe: passinga
nested continuation of an Act or Met hod<i nt > classwould result in asyntax error since
Cont i nuat i on<Voi d>isonly abaseclass of Act or Met hod<Voi d> nested contin-
uations. Since continuations of either type take an argument of only the specified type, type
safety at the point of the continuation call is guaranteed. A call of a continuation using the
wrong operand type is not possible. Finaly, actor and method compatibility is aso type
checked at the point where the nested continuation instance is constructed. It is not possi-
ble to create a continuation that calls a method on the wrong type of actor.

Actor Aggregate

Figure 3.3 Implementations of a concurrent array

42

name—which must redirect requests to the appropriate subrange actor. This serialization
may lead to bottlenecks; an extra indirection is required and the indirection process is se-
rialized. In the aggregate implementation, since all representatives in the aggregate share
the same name, there is no necessity to send all requeststo asingle actor. Instead, arequest
may be sent directly to the appropriate representative. Serialization will occur only if two
clients attempt simultaneously to access an element stored in the same representative.

Aggregate types are derived from the library class Aggr egat e (Interface 3.5). The
Aggr egat e interfaceissimilar to the Act or interface. The added routines allow the de-
termination of the index of individual representatives as well as the number of representa-
tivesin the aggregate.

TheHl TECfault database classFaul t ismadean aggregatein the parallel application:

cl ass Faul t Dat aBase : public Aggregate,
public Fault {

b

Again, derivation is used to alow sharing of object code with the serial application. Ac-

t or Met hods and Cont i nuat i ons have the same syntax for aggregates as they do for
Act or s. However, when a continuationis called on an aggregate, arepresentativeis auto-
matically selected by therun time system. Distribution of representativesand customization
of the representative selection mechanism are considered in Chapter 5, though it is worth
noting here that resolution to broadcast is an available choice. In this case, the method will
be invoked once for each representative. Because broadcasting is handled through repre-
sentative selection, thereisno syntactical differentiation between aunicast continuation call
and a broadcast continuation call.

Interface 3.5 cl ass Aggregat e

cl ass Aggregate : public Actor
{
publi c:
unsi gned int representativel ndexCf () const;
unsi gned i nt number O Representati vesOf () const;

pr ot ect ed:
Aggregate(Director&);
vi rtual “Aggregate();

virtual void termnate();

43
3.3.2 Aggregate names

Just as Act or Names are used for Act or s, Aggr egat eNanes are used for aggre-
gate types. The Aggr egat eNane interfaceis givenin Interface 3.6.

The operation of the pointer coercion functions for aggregatesis an extrapolation of the
functionality for actors. In the aggregate case, a pointer to arepresentative will be returned
if any representative is within the address space of the executing thread. Furthermore, if
multiple representatives are reachable, the ‘nearest’ representative will be returned, i.e., if
arepresentative was created on every thread, the coercion function will return a pointer to
the representative created on the executing thread.

In addition to the functions available on Act or Nanes, the Aggr egat eNane inter-
face includes several extensions:. collection operations and coercion to Act or Nanes.

3.3.2.1 Intraaggregate operations

Aggregate names providetwo collection operations, r epr esent at i ve() andal | -
Represent ati ves() . Both operations return a new Aggr egat eNane instance. In

Interface 3.6 cl ass Aggr egat eNane

tenpl ate <cl ass Type>

cl ass AggregateNanme : public Aggregat eName<Generi c>

{

publi c:

Aggr egat eNane() ;
Aggr egat eNane(cl ass Type&);
Aggr egat eNane(const Aggregat eNane<Type>&);
“ Aggr egat eNarre() ;

oper at or Act or Name<Type>& ();

(class Type&);
(const Aggregat eNane<Type>&);

Aggr egat eNanme<Type>& operator =
Aggr egat eNanme<Type>& operator =
static

Aggr egat eNane<Type> newNane() ;

operator Type* () const;
Type* operator -> () const;

Aggr egat eNane<Type> representati ve(unsigned int) const;
Aggr egat eNane<Type> al | Representatives() const;

44

thecaseof repr esent at i ve() , the new name will be resolved to the name of the rep-
resentative indicated by the argument. While the static interface of the new instance is not
changed, if the new instance is used in the creation of a continuation, when called the con-
tinuation will cause execution of the appropriate method on the sel ected representative, by-
passing the representative selection mechanism. Similarly, if the name returned by al | -
Repr esent ati ves() isused, the applicable method will be run oncefor each represen-
tative.

3.3.2.2 Actor name coercion functions

Aggr egat eNanes canbecoercedinto Act or Nanes of thesametemplatetypewith-
out lossof generality, i.e., representative sel ection semantics. The purpose of alowing such
coercion is to facilitate incremental parallelization. Consider the situation in which an ac-
tor classisdesigned, implemented, and used by anumber of clients. If it isdetermined that
the actor type is becoming a bottleneck, it is natural to create an aggregate implementation
that uses the multiaccess interface of aggregates to express a higher degree of concurrency.
If the process of upgrading an actor to an aggregate invalidates a large quantity of exist-
ing code, there will be a high cost for the change. However, because Act or Nanes and
Aggr egat eNanes for the same object can coexist, existing code need not be changed.
Internally, the two types have the identical representations. While only objects that manip-
ulate Aggr egat eNanes can perform intraaggregate operations on the names, code that
mani pul ates aggregate names via Act or Nane instances still use representative selection
features.

Theimplicit coercion facilitatesthe writing of librariesfor which client codeisindepen-
dent of the choice of an actor or aggregate implementation. Because the unicast/broadcast
nature of acontinuationisinherited from the name used to create the continuation, the choice
of which mechanism will be used can be made by the creator of the name. By contrast, in
the original model, the choice was aways made at the point a which the continuation is
executed [5]. The ability to encapsulate this information in continuations which are then
passed to independent packages should find use in the design of reusable library modules.

3.4 Performance

There are anumber of operations in the actor interface whose cost can become the the
limiting factor in the applicability of the library. The greater the cost of these operations

45

becomes, the higher becomes the minimum granularity of computation required in order
that communication costs do not dominate and cause performance degradation.

The cost of several basic operations in the actor interface is summarized in Table 3.1.
Each of the costsisgenerated by Quant i f y from Pure Software [55] on a Sun 4/690MP, a
45MHz SuperSPARC based multiprocessor?. It should be noted that these val ues represent
the current implementation which has been tuned for the performance of the CAD appli-
cations being developed in the ProperCAD project, but not otherwise. In particular, it has
been not tuned specifically for the operations described in this section.

3.4.1 Actor creation

Actor creation time is measured as the time to execute the task which creates an actor,
including all function call overhead. The sample actor used in thistest has no member state
or initialization other than those inherited from the Act or base class. 200z Two valuesare
shown, the first for actors that are not given prebound names and the second for those that
are. The difference illustrates one of the optimizationsin the name protocol of the AIF: if
an actor name is not assigned a name via a parameter to the new continuation call, bind-
ing information cannot escape and thus does not have to be maintained by the name server
(Chapter 5). Of the 421 cyclesrequired to create the unnamed actor, 79 cycles are memory
allocation.

3While useful for optimization purposes, Quant i f y results show some inaccuracieswhen they are com-
pared against hand calculation and thus should be interpreted with care.

Table 3.1 Costs of actor primitives

Operation Cost

Cycles | psec
Actor Creation unnamed 421 10
Actor Creation named 3671 91
Actor Name Allocation 166 4
Actor Name Pointer Coercion direct 438 1
Actor Name Pointer Coercion indirect 255 6
Continuation Call 551 13
Continuation Execution 1130 28

46
3.4.2 Actor name allocation

Allocation of an unbound name isalocal operation. Much of the overhead in this case
isattributableto severa layers of function callsthat have not been inlined; the function call
overhead has no appreciable impact on the current suite of applications.

3.4.3 Actor name pointer coercions

Actor name coercion isthe process of turning an actor name into apointer to an actor in-
stance. The weight of this operation is dependent on the internal binding state of the name.
When an actor name s created directly from a pointer to an actor, the information is main-
tained directly in the name, and thus direct coercion isfast.

If an actor is created with an optional name argument, pointer coercion of the unbound
name after the actor has been created resultsin the correct pointer value but requires alevel
of indirection, though the name database, to resolve the name. Once the name has been
resolved onetime, the binding state of the nameis updated in place and subsequent coercion
isdirect.

3.4.4 Continuation call

The cost of caling a continuation is the cost of creating the task that will execute that
continuation plus the cost of inserting the task into the task queue maintained by the run
time. Chapter 5 discusses task queues.

3.4.5 Continuation execution

The cost labeled continuation execution is not the cost of a primitive operation; it rep-
resents theinterval of time starting when a continuation is called and ending when the first
line of the associated method occurs. In general, this period of time can be arbitrarily long
if other tasks are waiting. The vaues in the table represent the minimum possible dura-
tion, when nointervening tasks are executed. It includesthe cost of calling the continuation,
given earlier, and adds to it the cost of dequeuing the task and executing it.

The values of these various parameters provide some indication of the level of com-
munication the current AIF implementation can efficiently support. Some of these values
can be improved, some dramatically, such as the cost of creating an actor with a prebound
name. However, there will aways be limitsto the fineness of granularity supportable, even
on shared memory platforms, if not simply because of the separation of concurrent and serial

47

constructsin the library; atruly fine-grain approach requires that virtually all structures be
concurrent. The current expression of concurrency inthe AlFistoo inconvenient to express
truly fine-grain concurrency.

3.5 Evaluation

In this section, we summarize our experiences with Actor Interface. We consider both
those aspects of the interface that achieved our goals and those that are either inelegant or
in need of extension.

3.5.1 Static type safety

Static type safety is completely guaranteed by the interface and, as shown in the barrier
example in this chapter, has aready found use in existing CAD applications. Static type
safety was considered a key goal of the interface design and is one of the characteristics
that makes this interface unique among actor approaches to concurrent C++,

3.5.2 First class names and continuations

The ability to create, operate on, and interchange actor and aggregate names has proven
to be vital to the construction of an interface that has a high degree of expressibility but that
supports static type safety and separate compilation. We believe that the expressibility of
names linked with statically typed continuations will be key to implementing application
libraries that can be effectively composed to create new applications.

3.5.3 Derivation-based parallelization

Our experience with parallelization through derivation leads usto believe that it will be
key to parallelizing existing codes without the doubling of development and support costs.
For many medium-grain applications, the added cost of dynamic binding will be acceptable,
and the impact on the expressibility and readability of the serial code will be nominal. To
attempt to further qualify the applicability of incremental parallelism, we must separate par-
allelization effortsinto two classes: those that are performed within the same devel opment
organization as the serial code and those that are not.

Where serial and parallel development occur in tandem, incrementa parallelism holds
the most potential. Thework in thisthesis showsthat via derivation, serial and parallel ap-

48

plicationscan be devel oped from the same source and object codes using dynamic binding to
select the appropriate mechanism. Because dynamic binding is not the default in Ct, par-
allelization may require the specification of more dynamically bound functionsin the serial
code than might otherwise be used. However, since the specification of dynamic binding has
no impact on the semantics of the serial code, little extradevel opment and support costsare
incurred.

Beyond the addition of dynamic binding, to support concurrency certain styles of pro-
gramming—for example, passing values among procedures via static variables—must be
precluded. While this prohibition potentially reflects a more significant impact on the cost
of serial development, the constraints required for parallelization overlap those posed by
software engineering quality standards and thus are generally not objectionable. Thus, the
costs of supporting parallelism can be brought down to level of the actual cost of express-
ing the parallel algorithm, specifically eliminating the redundant costs usually implied by
concurrent but independent serial and parallel development.

In contrast, when aseria code isdeveloped by an outside party, it isdifficult to quantify
or bound the effort required to incorporate revisions of the serial codeinto aparallel applica
tion. The most obviousreason for thisdifficultly istheinability to quantify or bound the de-
gree of changethat can occur in the serial code. Beyond the difficultiesimplied by arbitrary
changesintheseria code, if the programming stylerestrictionsrequired for concurrency are
not present in the serial development, the changes required to satisfy these restrictions must
be reintegrated in every new serial release. While these constraints are generally the same
asthose required by software engineering quality standards, in their absence, the techniques
developed and used in thisthesis may be inapplicable.

3.5.4 The preprocessor

The preprocessor [56] is used to implement the nested classesin Act or Met hods and
to provide some of the type safe interface in actor and aggregate classes. Use of the pre-
processor in Ct is generally considered inelegant and to be avoided [54]. Yet at the same
time, the namelookup and inheritance mechanismsin C++ arein some respects very inflex-
ible. While it is simple to specify classes with flexible interfaces and functionalities, it is
not possible to specify characteristics of classes of classes, that is, properties that hold for
sets of classes. Classes of classes are called metaclasses [57]. Recently, significant interest
has arisen concerning metaobject protocols, functions that operate on metaclass objects, or
metaobjects [58]. Most of thiswork has been in CLOS, the Common Lisp Object System,

49

and while some of the concepts are not applicable to the static environments usually found
in Ctt, when some of the concepts from a metaobject protocol are used, the expressibility
of Ctt can be better understood. In this light, both templates and the preprocessor can be
seen to provide some level of metaclass programmability. It was in this light that use of
preprocessor macros was accepted, since al indications were that no better solution would
be found. Experience gained in using the preprocessor to implement metaobject protocols
may lead to possible extensions or to anew language that could maintain compatibility with
Ctt and yet extend the expressibility. Such alanguage or extensionisas applicableto serial
programming asit is to concurrent programming.

3.5.5 Multiple inheritance of actor types

Currently, actor types cannot be virtually derived from the actor base class. While mul-
tiple inheritance can be used with an actor type and one or more nonactor classes, multiple
inheritance of actor types requires that the Act or base be a virtual basein all classes de-
rived from Act or . Thisisaresult of thetype model in Ct*: it isfundamental in Ct+ that a
member function may not be called for an object unlessthe type of the object is sufficiently
well specified, i.e., to within a base class defining the indicated member. To schedule ac-
tor method invocations, the AIF run time casts an Act or reference to the target type and
then calls the appropriate member. Because the actor interface is type safe, this downcast
isawaysvalid. However, in the current language, downcasts from virtual bases are not le-
gal [56]. Thisrestriction has been lifted by the Ct* standardization committee [54]. When
compiled with compilers that support the new features, the AIF will support virtual bases.
The prohibition against virtual basesis the only limitation on actor class organization.

3.5.6 Actor names

While Act or Namres can be created from actors of derived types, actors names of re-
lated types do not support the trivial conversions that pointers and references do. For ex-
ample, given two actors:

class A: public Actor { ... };
class B: public A{ ... } b;

References and Act or Nanes of class A can be created from the b object:

A& ref = b;
Act or Nane<A> nane = b;

50

The conversion to abase classtypeisautomatic. However, Act or Nane instances have no
relationship even if their template argument types do:

Act or Name<A> x a;
Act or Nane y b;
X = y; /1 error

Act or Names are among the class of smart pointersthat isnot currently well-supportedin
Ct+ [59]. Asinthe casefor virtua bases, amethod for full functionality has been adopted
by the Ctt standardization group and awaits implementation [54].

3.5.7 Applicability

As noted in Section 3.4, the applicability of the interface to concurrent programming is
limited by a combination of implementation efficiency and method of expression.

3.5.7.1 Efficiency Constraints

Efficiency constraints take two forms: those that are inherited from the characteristics
of the underlying paralld platform and those implicit in the interface and thus present in
all implementations. In the former class are issues such as network latency and bandwidth.
Thereisnoway to incorporate hardware limitationsinto adescription of the applicability of
the AIF, because the AIF isdesigned to run on avariety of architectures. Therefore, an ap-
plication based on the AIF may show performance dependence on the underlying platform.
Whilethe AIF can be used to express granularities from medium to coarse, efficiency of the
overall application will be afunction of the combination of application and platform granu-
larities. A goal of the design of the AIF was that the interface and implementation provide
coarse-grain concurrency acrossarange of implementati onsand medium-grain concurrency
on those platforms providing sufficient processor and communication resources.

The second class of constraints relates to the model itself; this class limits applicability
regardless of target platform. Theselimitationsare manifest by the operation costsinthein-
terface, reported in Section 3.4. While the values reported may be improved significantly,
the programming model—in particul ar, the meta-programmability described in Chapter 5—
places alower bound on the cost of these operations. In effect, because the application de-
signer has the ability to express low-level dynamics such as scheduling, the run time sys-
tem is constrained in the set of implementation and optimization techniques. For example,
whileitisconceptually possibletoinlineamethod call from one actor to another actor when
the actors are in the same address space, the run time library is precluded from doing this

51

because it may violate the task prioritization defined by the designer. The ability of the ap-
plication to influence run time limits the range of possible run time implementations. The
result of thischoiceisthat theinterfaceis applicableto situationswhere optimizationsat the
level of continuation passing and scheduling will be done only by the devel oper, not by the
run time. Since as concurrency increases, optimization becomes more important yet more
difficult to perform manually, the interface is not appropriate for truly fine-grain applica
tions.

3.5.7.2 Expression Constraints

In addition to issues of execution efficiency, another constraint on applicability is the
form that concurrency expression takes. The approach taken in this work is that the de-
fault expression, i.e., code written in Ct without using types from thelibrary, is serial and
that only through manual addition of concurrent typesis parallelism expressed. For highly
concurrent applications, this would be tedious: in every case where concurrency was de-
sired, generally both a serial and a concurrent construct would be required. In contrast, in
alanguage like IC-Ct* [26], all operations are given concurrent semantics and thus only a
single construct is required. In casesin which fine-grain concurrency is required, the use of
Act or Met hod classes and explicit continuations would significantly increase the amount
of code necessary.

Whilethelimitsof applicability are understood qualitatively, quantitative understanding
will require more experience. Of particular value would be a measure of the lower bound
on the support for medium-grain concurrency, i.e., ameasure of the greatest degree of con-
currency for which the interface is an effective implementation tool. The applications de-
veloped to date exhibit grain sizes that do not push the limits of the interface and imple-
mentation and thus provide little insight into a quantitative measure of concurrency which
could be used to describe the boundary between effectiveness and i neffectiveness. A clearer
understanding of this boundary isagoal of future work.

3.6 Other Actor Models and Implementations

Many implementations of the actor model or actor-like models exist. We survey anum-
ber of these implementationsand contrast the features of those model sand implementations
with those of the AIF.

52
3.6.1 Extensions to the actor model

The actor model in its simplest form isfairly low-level. Severa extensions have been
made to the model to extend expressibility. Many of these extensions have provided new
ways of expressing constraints on when and where tasks may be executed and new ways of
coordinating communications among groups of actors [60], [61].

3.6.2 Pure actor languages

A number of pure actor languages have been implemented since the proposal of theorig-
inal model [62]. Following the origina model, most actor languages are functiondl, i.e.,
side-effect free, and untyped. Implementations of the majority of these approaches have
targeted fine-grain concurrency on massively parale architectures, and many were never
actually implemented on distributed machines. The earliest languages were Act [51], [63],
Actl [64], Act2 [65], Act3 [51], Sal [51], and ABCL/1 [66]. A more recent contribution,
with an emphasis on reflection, isMERING IV [67].

3.6.3 HAL

Among pure actor languages, of particular noteisthe HAL language of Houck and Agha[68],
which was implemented on top of the Charm programming system [69]. HAL represents
one of the few truly distributed implementations of a pure actor language and is notable for
having formed the basisfor further expl oration into meta-programmability extensions of the
actor model.

3.6.4 Concert

Chien [5] recognized the need for amultiaccessinterface to augment the serial interface
of Actors. He proposed aggregates as collections of actors that present a unified, yet mul-
tiaccess, interface to client code. Key to aggregates is support for efficient intraaggregate
addressing. Chien and Dally [70] proposed a pure actor language, Concurrent Aggregates
(CA), which in addition to having the features of actors, aggregates, and intraaggregate ad-
dressing, provides support for first class continuations and messages.

The Concert system of Chien, Karamcheti and Plevyak [27], [71], isacompiler and run
time support system for a version of Concurrent Aggregates on stock hardware, i.e., such
contemporary parallel machinesas Thinking Machines' CM-5 and Intel’s Paragon. The ob-
jective of the Concert system isto take a fine-grain concurrent language, CA, and through

53

extensive data flow and type analysis on the part of the compiler, produce code that runs
efficiently on medium- and coarse-grain machines. The Concert system compiler compiles
CA to Ct*, creating an executable that provides run times competitive with native C and
Ct[27].

3.6.5 Charm and Charm++

Charm [69], [72] and Charmt+ [73] are paralld programming environments, derived
from C and C*t* respectively, targeted at medium-grain architectures and applications. The
fundamental object of parallelismin Charm isthe chare, an object with behavior similar to
that of actors. Charm supportscollectiontypesviabranch-office chares, which are aggregate-
like objects with implicit per-thread distribution. In addition to a parallel interface, branch
office chares have a seria interface that can be used to make blocking calls on local repre-
sentative chares.

Charm was devel oped specifically to address the requirement for a portable, parallel in-
terface and for implementation across awide variety of both shared memory and distributed
memory architectures. Charm differs from other actor languages in that it is targeted to
medium-grain parallelism architectures rather than to the massively parallel processors of
many other implementations. Among the most significant and unique features of Charm
arel

1. imperative-language interface. Charm is an extension of the C programming lan-
guage with extensionsto support actor- and aggregate-like characteristics. Withafew
exceptions, the imperative constructs of C are retained.

2. meta-programming features. Charm provides devel oper-visible models for the oper-
ation of the underlying run time system in the areas of |oad-balancing and prioritized
message delivery. Strategies in both areas can be selected from a set of aternatives
at link-time. Of particular note is work with lexicographically ordered message pri-
orities applied to search problems[74].

3. library types. Charm provides a library of object types with parallel semantics such
as read-only variables, distributed computation types such as accumulators, and dis-
tributed mappings[75].

Charm and Charm+ have aso been used to implement severa other abstractions. As
mentioned, HAL [68] isa pure actor language that uses Charm as the underlying infrastruc-
ture. Dagger [76] is a coordination language that adds to Charm a method of expressing

54

a partial order on Charm messages, which eliminates some of the difficulties in express-
ing data dependenciesin alow-level actor language. Other extensionsinclude the ability to
succinctly represent specific parallel idioms such as divide-and-conquer paralelism [77].

The first phase of the ProperCAD project [1] used Charm as the parallel programming
environment, and many of the extensions to the actor model that exist in the AIF are ex-
tensions of features of Charm. The priority mechanism of Charm was determined in earlier
work [1] to be crucial for efficient execution of CAD applications and was extended in the
AlF.

Features of the Actor Interface that differ most significantly from Charm are support for
static typing, as represented by first class continuations, and composability, as represented
by per-class meta-programmability. In Charm, names are created as a side effect of creating
chares. The ability to separate object creation from name creation is necessary to express
sometypesof computation. Asinthe original aggregate model, different functions are used
to specify unicast and broadcast; therefore, client codeis dependent on the type of the object
to which amessageis being sent.

Because Charm does not havefirst class continuations, two techniques are used to repre-
sent the samefunctionality. A user-defined continuationpair, <Ent r yPoi nt | D, Char el D>,
can be used. However, because the pair is not a system object, static type checking can-
not be done to ensure that the elements of the pair are consistent. Derivation has al so been
proposed to express a type-safe alternative [73]. A chare that will receive a message from
another chare inheritsfrom areceiver type defined by the sender. For example, the user in-
terface in Pr oper HI TEC which uses barriers to synchronize aggregate creation could be
defined in Charnr+ as

chare class Userinterface : public BarrierReceiver {

virtual void receiveBarrier();

b
However, this use of derivation precludes the use of more than one barrier function in a
class. The User | nt er f ace actor, which creates three barriers, would have to keep an
extra state variable. By contrast, when first class continuations are used, a barrier actor is
created with a continuation representing the method to be called in the computation.

3.6.6 ACT+H

ACT*H isa Ct library-based implementation of the actor paradigm developed by Ka-
furaand Lee[78], [79]. ACT*H implementsan Act or base classthat supportsall the actor

55

model primitives of new, send, and become. Additionally, ACT+* supports an RPC-style
of actor method invocation [51] via blocking within the library. ACT++ alows the use of
normal Ct+ objects, but only as private, nonshared acquaintances of an actor. ACT+t is
targeted to distributed processing, but distributed implementation details have not yet been
reported.

3.6.7 CLAP

Recently, CLAP, Ct* Librariesfor Actor Programming, has been presented by Desbiens
et a. [80]. CLAP usesthe actor model and a Ct classlibrary to express actor concurrency
on distributed memory machines. The interface to CLAP is similar to that of ACT++ and
uses the dynamic type model of the original actor model. Current implementation efforts
are aimed at a network of transputers.

56

Chapter 4
ABSTRACT PARALLEL ARCHITECTURE

The Abstract Parallel Architecture (APA) comprisesamodel of aparallel computer and
aset of objectsthat representsareification of that model. The APA providesabstractionsfor
thread, resource, and configuration management and has been designed to provide a stan-
dard interface across al platforms with no extraneous overhead. The APA interface pro-
vides multiple access points, which alows client code to use generic calls for noncritical
performance clients and more precise control when performance s critical.

A unique aspect of the APA design is that, from inception, it was targeted toward par-
allel architectures that mix shared and distributed memory characteristics, i.e., when some
but not all threads share some part of an address space. This integration removes the ne-
cessity for separate shared and distributed memory implementations of APA clients, such
as the AIF, and also facilitates specializing communication patterns for different configu-
rations. For example, actor applications that are run on a workstation cluster that includes
multiprocessors pass messages via shared memory within amultiprocessor and viamessage
passing otherwise.

The APA currently supports Sun and Encore shared memory multiprocessors and Intel
and Thinking Machinesdistributed memory multicomputers. The APA supports|P-connected
clustersof asinglearchitectures, i.e., when the same program executableisrun on all nodes.
The APA is self-sufficient and may be used apart from the actor interface.

4.1 Thread Management

The APA thread subsystem manages aset of virtual processing elements, represented by
instances of the Thr ead class. Thread objects are collected into sets characterized by the
means by which they may communicate. These sets are represented by the library classes

57

Process, ProcessG oup, and Cl ust er . The relationships between the sets are de-
picted in Figure 4.1.

4.1.1 Thread

Thefundamental unit of computationisthethread. A thread may represent anindividual
processor or asingletask under an operating system supporting multitasking. Theinterface
for the Thr ead classis shown in Interface 4.1.

A reference to the current thread isreturned by acall tothet hi sThread() member.
The container instance, inthiscaseaPr ocess object, containing thethread isreturned via

ProcessGroup ProcessGroup

()
o
(=)

-
OO

Process

O
OO

A

Shared Memory Segment

Shared Address Space ProcessGroup

o
o
S

-
Process O o

-«+«——» Completely-connected,
reliable datagram network

Cluster

Figure 4.1 APA thread management classes

58

Interface 4.1 ¢l ass Thr ead

cl ass Thread

{
publi c:

static Thread& thisThread(); /1 access and
Process& processOr () ; /1 identification
unsi gned int indexCtf () const;

File& in() const; /1 stdio
Fil e& out () const;
File& err() const;

Reservoir& privateStoreReservoirOf(); // menory managenent
Reservoir& sharedStoreReservoirO(); // interface

the pr ocessOf () member. All threads in a machine are given a unique index, returned
by thei ndexOf () member. Each thread manages a standard 1/O interface similar to that
provided by st di o inthestandard C library and by the st r eamclassin the standard C++
library.

Among the most significant responsibilities of the Thread management classesis coher-
ent management of thefreestore. Each Thr ead instancemanagesoneor moreReser voi r s
which handle efficient, i.e., with minimal critical sections, thread safe allocation and deallo-
cation of memory. The memory management system isdescribed in detail in Section 4.2. It
isworth noting herethat while Thr ead instanceshave oneor moreReser voi r s for man-
aging memory in private and shared address spaces, they do not actually ‘own’ any memory
regions. Address space management is relegated to instances of the container classesin a
manner analogous to Mach [81]. Also, while the Thr ead class interface provides shared
and private free storesin al configurations, on some machines—those that support no form
of shared memory—the accessor functions return references to the same object. Whether
or not shared memory is supported is a compile time option; the choice does not incur run
time overhead on machines which do not support shared memory.

4.1.2 Process

Thr eads that share a complete address space are collected into a container called a
Process. Becausedl Thr eads inaPr ocess shareidentical address spaces, al point-

59

ersare valid across Thr ead boundaries withinaPr ocess. Thismodel is applicable, for
example, to Mach threads. Theinterface to the Pr ocess classis shown in Interface 4.2.

Like Thr eads, Pr ocesses are indexed within the running machine. Furthermore,
Pr ocess instances provide access to the threads which they contain. As shown in Fig-
ure 4.1, Pr ocess instances own the free store segment that is used by the Thr ead in-
stancesthey contain. Theinterfacesof theFr eeSt or e and PageTabl e classesaregiven
in Section 4.2. The memory managed by this free store is the same as that managed by
mal | oc in the standard library, i.e., it is managed viathe br k() system call. For usein
existing libraries and applications, together the Thr ead and Pr ocess classesprovideim-
plementationsof mal | oc,free,andreal | oc.

Many existing functionsin standard system libraries are not thread safe yet they must be
used for various functionalities. To facilitate this, on machines supporting multiple threads
per process, asemaphore (Section 4.3) isavailablethat can be used, cooperatively, to protect
callstofunctionsthat potentially conflict. Anexampleof thistypeof functionisthestandard
library call f open. The f open function scans a list of file descriptors, searching for a
free descriptor, which it returns. If two threads execute an f open call concurrently, race
conditionsmay occur. Therefore, each thread isrequired to lock the semaphore returned by
addr essSpacelLockO () beforeentering f open. While a better solution would be to
provideathread-safe version of f open, rewriting all librariesthat are not thread-safe is not

Intferface 4.2 cl ass Process

cl ass Process

{

publi c:
static Process& thisProcess(); /1 access and
ProcessG oup& processG oupOdf (); /1 identification

unsi gned int indexXf () const;

unsi gned i nt nunber O ThreadsOf () const;

unsi gned int indexX FirstThread() const;
Thread& thread(unsigned int);

PageTabl e& pageTabl eOf () ; /1 menmory managenent
FreeStore& freeStoreO (); /1 interface

#i f THREADED

Semaphor e& addr essSpaceLockOF (); // catch-all 1ock
#endi f // THREADED

b

60

afeasible solution. The address space lock provides a reasonable if conservative solution
for current usage. The APA does not actually use the address space lock; al locking within
the APA isdone at afiner level.

4.1.3 Process group

Threads that share some portion of their address space are collected into a container
caled aProcessG oup. Sinceadl Thr eads inaProcessG oup do not necessarily
share identical address spaces, pointers may not be valid across Thr ead boundaries; ad-
dresses are guaranteed to bevalid if and only if they point within a shared memory segment.
This model is applicable, for example, to systemsthat use mmap() [82] and Unix System
V IPC. Theinterface of the Pr ocessG oup classis shownin Interface 4.3.

Pr ocessG oups are indexed within the running machine and provide access to the
Pr ocess instancesthey contain. Pr ocess instancesown the free store segment and page
tablewhichis shared among Thr ead instancesthey contain (Figure4.1). Thefree storein
aPr ocessG oup ismapped at the same addressin all contained Pr ocesses. For usein
existing libraries and applications, together the Thr ead Pr ocess and Pr ocessG oup
classes provide implementations of shmal | oc, shf ree,andshreal | oc.

Interface 4.3 cl ass ProcessG oup

cl ass ProcessG oup

{
publi c:

static ProcessG oup& thisProcessGoup(); // access and
Cluster& clusterO(); /1 identification
unsi gned int indexCtf () const;
unsi gned int indexX FirstProcess() const;
unsi gned i nt nunber O ProcessesO () const;
Process& process(unsigned int);

PageTabl e& pageTabl eOf () ; /1l menory managenent
FreeStore& freeStoreO (); /'l interface

61
4.1.4 Cluster

All threads in a program are collected into a container type called aCl ust er . Pr o-
cess@ oups areinterconnected by acompletel y-connected, reliable, unordered, datagram
network (Interface 4.4). There is conceptually one cluster in every program. Physicaly,
thereisan instance of the Cl ust er classin every Pr ocessG oup; therefore every run-
ning Thr ead hasaccesstoaCl ust er instance. In addition to determining the size of the
virtual machine, the cluster provides routines for mapping between Thr ead indices and
ProcessG oup indices.

If amachine hasmorethan onePr ocessG oup, Pr ocessG oups are conceptually
connected viaan ordered, reliable datagram network. Thesend andr ecei ve membersof
the d ust er classare used to exchange datagrams. Since message passing occurs among
Pr ocessG oups, the unicast send member takes a datagram and a Pr ocess G oup

Interface 4.4 cl ass O uster

class d uster

{
publi c:
static Custer& theC uster(); /1 access and
[/ identification

unsi gned i nt nunber O ProcessG oupsOf () const;
unsi gned i nt nunber O ProcessesO () const;
unsi gned i nt nunber O ThreadsOf () const;
unsi gned int threadToProcessGoup(unsigned int) const;
unsi gned int processG oupToThread(unsigned int) const;

#i f DI STRI BUTED /'l message passing

voi d send(Datagrang, /1 uni cast

unsi gned i nt toProcessG oup,

unsi gned int toThread = U NT_MAX);
voi d send(Datagran&); /1 broadcast

i nt receiveReady() const;
Dat agram r ecei ve();

#endi f // DI STRI BUTED

}s

62

index as parameters. Optionally, if a message is to be processed by a particular Thr ead
of aPr ocessG oup, the Thr ead index may be provided. The APA does not necessar-
ily route messages to individual threads; a datagram may be received by any thread within
the destination process group. The APA does not implement message passing via shared
memory; this functionality, if desired, would be part of a higher level library, such as the
AlF.

Instances of the thread management classes described above areall instanti ated automat-
icaly by thelibrary. In the degenerate case in which an application isbeing run onasingle
processor, exactly one instance of each classis created, and that instance is statically allo-
cated inthe APA library. For machines on which a particular model isnot implemented, for
example, multithreading on an Intel hypercube, accessestodataintheThr ead, Pr ocess,
and Pr ocess G oup instances are resolved at link time and incur no run time overhead.

4.1.5 Thread manager

The classes described in Subsections 4.1.1 through 4.1.4 reflect the state of the running
system, but they do not include functionality for starting and stopping multiplethreads. The
Thr eadManager class, whose interface is shown in Interface 4.5, provides for spawning
and reaping threads.

The constructor for the thread manager object takes a pointer to a function with a sig-
nature identical to mai n and arranges for that function to be called once on each thread.

Interface 4.5 cl ass Thr eadManager

cl ass ThreadManager

{
publi c:
typedef int (*TypeO'Main)(int, char*[]);
Thr eadManager (TypeO'Main) =0);
virtual ~ThreadManager();

static ThreadManager & manager O (Thread&);
static ThreadManager & t hi sManager () ;

int isFirst() const;

63

An example of the use of Thr eadManager instancesis shown in Figure 4.2. The actual
call of the target function, par al | el occurs in the destructor of the Thr eadManager
object; therefore, code that occurs after the definition of the manager but before it goes out
of scope can be used for initialization. The Thr eadManager destructor completes when
the target function completes on al threads.

Depending on the application, it may be necessary to protect theinitialization code with
a condition as shown in the figure. The number of times mai n is executed is not defined
by the APA. Code that should run on all processors should be be placed within the function
passed to the Thr eadManager . Code that should run on only one thread may be placed
either withinthe parallel function or withinmai n but in either case should be executed only
if the Thr eadManager . i sFi rst () predicateistrue.

Spawning threads within the destructor appears somewhat awkward at first glance but
was chosen as a compromise between portability and utility. While it would be more aes-
thetic to simply execute mai n once for each thread, this functionality cannot be imple-
mented on existing systems for which a function pointer is used in a spawn call. On these
systems, the indicated function runsin parallel on each thread, followed by an implicit reap
as the function returns on each thread. Alternately, a procedural approach could have been
adopted. In thiscase an imperative function provided by the library would be called to per-
form the spawn. This type of approach would be strictly procedural and would not allow
customization via derivation. The middle ground, the use of a member function, was cho-
sen. Use of the destructor as the selected member function is a variation on the resource
acquisition isinitialization paradigm popular in Ct+ libraries and applications [54].

extern "C' int parallel(int, char*[]);

i nt
main(int, char*[])

{

Thr eadManager manager (parallel);

/1 initialization code
if (manager.isFirst()) {

}

/1 fork occurs at destruction of manager when
/1 it goes out of scope here

Figure 4.2 Use of Thr eadManager class

64

The code given in Figure 4.2, without initialization, is present in the library, which en-
ablesthe use of existing codewith only asmall change, renaming mai ntopar al | el . For
example, the parallel “hello, world” C program for the APA is

parall el ()
{

}

printf("hello, world\n");

4.2 Resource Management

Free store (mal | oc) management is an area of common difficultly and little standard-
ization. Many machinesthat supply a shared memory interface provide either little support
for alocation of memory within shared memory segments or do so in a vendor-dependent
manner. Implementationsof mal | oc are also well known for widely varying performance
characteristics. The APA free store management classes were designed to address both is-
sues as well as to provide extended functionality.

Figure 4.3 illustrates the relationship among the component classes. The operating sys-
tem interface to the free store hierarchy is contained within the Fr eeSt or e class, which
manages a contiguous segment of memory in units of pages. A PageTabl e isallocated
for each Fr eeSt or e, which provides alocation and deallocation of arbitrary numbers of
pages and manages concurrency on thosearchitecturesfor whichitisavailable. Reser voi r s
provideaper-thread interface which efficiently manageslarge numbersof small and medium
size objects. Reservoir operations do not usually require the use of a critical section; there-
fore synchronization overhead is minimized.

4.2.1 Free store

The operating system interface to the free store hierarchy is contained completely within
the Fr eeSt or e class. A Fr eeSt or e object manages a contiguous segment of memory
in units of pages. Fr eeSt or es dlocate, on demand, new pages of memory at the end of
the current segment and can return free pages at the end of the segment to the underlying
source. FreeSt or es neither handle noncontiguous segments nor maintain lists of free
pages. The Fr eeSt or e classinterface is shown in Interface 4.6.

In addition to functions for allocating and free pages, free stores support acont ai ns
predicate that returns a Boolean value indicating whether the address passed as an argument
iswithin the range of the managed segments. This predicate allows higher levelsin thefree

Figure 4.3 APA free store management classes

Interface 4.6 cl ass FreeStore

class FreeStore

{
publi c:
virtual “FreeStore();

virtual void* allocate(unsigned int |engthlnPages) = O;
virtual void free(void*) = 0;

size_t pageSi zeOF () const;

int contains(const void*) const;

66

store hierarchy to free objects back into the correct region when the application does not
provide thisinformation.

Fr eeSt or e isan abstract class; concrete classes derived from Fr ee St or e provide
servicesfor aparticular operating system interface. The APA currently supportsfree stores
for memory allocated usingtheUnix br k() andsbr k() systemcals(Br kFr eeSt or e),
for memory allocated using the Unix mmap() system call (MVapFr eeSt or e), and for
memory allocated usingthe Unix br k() call and shared usingthe EncoreMultimaxshar e()
cal (Shar eFr eeSt or e).

4.2.2 Page table

Because Fr eeSt or es do not support arbitrary deallocation or provide a thread-safe
interface, another interface layer is necessary to manage lists of pages and which can be
safely used in a multi-threaded applications. The PageTabl e object provides this func-
tionality. The PageTabl e interfaceis shownin Interface 4.7.

One PageTabl e isalocated for each Fr eeSt or e. A PageTabl e keeps an array
of page descriptors that encode information on the state of each page: whether it isfree or
allocated and, if allocated, how it wasallocated. Thislast featureisused by Reser voi rs,
which are described in Subsection 4.2.3. Although the PageTabl e has afew critical re-
gions to prevent chaotic behavior, it has been optimized for performance. Since most ac-
cessestothe PageTabl e do not modify the state of thetable, the PageTabl e object dif-

Interface 4.7 cl ass PageTabl e

cl ass PageTabl e

{
public:

PageTabl e(FreeStore&
size t initial FreeStoreSize = 512 * 1024,
unsi gned char m ni mum&owt h = 20,
unsi gned char maxi munOver Suppy = 50,
unsi gned i nt mni nunG veBack = 8);
virtual ~PageTabl e();

voi d* pageAl | ocat e(unsigned int nunber Of Pages, Pool* = 0);
voi d pageDeal | ocate(voi d*);

Pool * pool O (const void*) const;

67

ferentiates between read and write access and allows concurrent access to multiple readers.
Since access to the underlying free store to request pages generally requires a system call,
the page table overallocates pages in an attempt to have pages on hand to satisfy subse-
guent requests. The characteristics of this algorithm can be customized via parameters to
the PageTabl e constructor.

4.2.3 Reservoir

PageTabl es support only alocations in multiples of the page size, and acritical sec-
tionisrequired for most operations. Therefore, an interface isrequired to efficiently handle
large numbers of small and medium size objects. The Reser voi r classfillsthisrequire-
ment. A Reser voi r contains a number of pools of equal size objects. Since most of the

Inferface 4.8 cl ass Reservoir

cl ass Reservoir
{
public:
Reservoi r(PageTabl e& pageTabl e,
int linStep, size_t linTop, size t expTop=-1
int 1inGowthRate=10, int |linlnitCapacity=128
i nt expG owt hRat e=0, int explnitCapacity=16);
“Reservoir();

voi d* allocate(size t);

void free(void*); /'l deall ocation and
void free(void*, size t); /1 reallocation: safe
voi d* reall ocate(void*, size_ t);

void privateFree(void*, size t); /1 deall ocation and
voi d* privateReal | ocate(void*, size t); // reallocation: private
/1 (local data only)

i nt manages(const void*) const;

i nt disabl eTracki ng(); /1 turn on/off object

i nt enabl eTracki ng(); /1 counting: use around
/1 calls that allocate
/1 menmory but don’t
/1 free it

Figure 4.4 Reservoir size mapping

Figure 4.5 Datagram layout

70

Interface 4.9 cl ass Dat agr am

cl ass Dat agram

{
public:
Dat agram(voi d* pData, size_t length, void* pPacket = 0);
Dat agran{ Dat agram&);
“Dat agram() ;

Dat agr am& operator = (Datagranm&);
voi d* di sownCont ent s();

voi d* addHeader (size_ t);
voi d* renoveHeader(size_t);

To construct adatagram, two values are required: apointer to the beginning of dataand
adatalength. If the creator has preall ocated free space at the beginning of the buffer in ex-
pectation of added headers, the start of the contents buffer can be passed as athird argument.
The datagram ‘adopts' the object pointed to when the datais constructed; the datagram will
freethe memory space when it isdeleted. Thedi sownCont ent s member can be used to
retrieve the contents of the datagram while at the same time transferring responsibility for
freeing the contents to the caller.

By preallocating buffers with header space, applications can reduce or eliminate copies
required when messages are sent. The APA preallocates a small amount of header spacein
Val ue types (Section 5.1.3) and thus does not have to copy message contents when mar-
shaling is not required.

4.3.2 Semaphore

The Sermaphor e class provides a uniform interface to spin-lock style semaphores on
machines supporting some form of shared memory. The Sermaphor e class interface is
shown in Interface 4.10. Similarly, ReadW i t eSemaphor es provide separate read and
writelocks; multiplereader locks are allowed at onetime, while awritelock ensures exclu-
Sive access.

Inadditiontothenormal | ock andunl ock operations, Semaphor es provideastate-
based interface based on the Guar d class. Instances of aGuar d class guarantee exclusive
access for exactly their lifetimes. For example, typically a PageTabl e member function

71

Interface 4.10 cl ass Senmaphor e

cl ass Semaphore

{
publi c:
Semaphore();
~ Semaphore();
voi d | ock();
voi d unl ock();
class Guard { /1 use to |l ock/unlock critical sections
public:
Guard(Semaphore&);
“Q@uard();
b
b

locks the page table for the duration of a member call. Rather than execute separate lock
and unlock functions, a guard object is used:

PageTabl e: : function(...) const

{
ReadW it eSemaphor e: : ReadGuard guard (accessSemaphore);
/1 Since guard is live during the call to unsafeFunction, the state
/1l of the PageTable will not be changed (or exam ned) by ot her
/1 threads for the duration of the call
return unsaf eFunction(...);
}

The guard object locks accessSermaphor e in its constructor and unlocks it in its de-
structor. Unlocking within the destructor eliminates the chance that a semaphore will be
left locked. Thisidiom isadirect application of resource acquisitionisinitialization [54].

For performance reasons, the necessary indivisibleread-modify-write operationsfor Se-
maphor es areimplemented in assembly code on those machines for which they are nec-
essary. Moreover, the Semaphor e classis not an abstract class; a single implementation
is chosen when the library is compiled. In this case, the overhead of dynamic binding is of
particular concern, and the benefits of polymorphism are questionable.

72
4.4 Configuration Management

The Machi ne and Net wor k classes provide abstract interfaces to underlying hard-
ware. They have interfaces sufficiently flexible and recursive to describe almost any inter-
connection of machines. Because al machine classes have the same interface, client code
isnot dependent on the particular machine architecture. WhileMachi ne instancesarevis-
ible to application code, they are primarily used to implement configuration of the thread
management classes.

4.4.1 Machine

The primary responsibility of the Machi ne class is the management of machine con-
figuration, initialization, and destruction. The interface of the abstract Machi ne classis
shown in Interface 4.11. Most of the functions in the machine interface mirror those in the
logical Cl ust er class. However, whereinthe Cl ust er classthese functionssimply re-
turn the configuration as it exists—possibly with reference to the Machi ne object—the
same functionsin the Machi ne objects must determine the necessary information without
resorting to APA information. Thus, the derived Machi ne classes are the focal points for
machine-specific data and are the focus of most consideration when anew port of the APA
IS generated.

Inferface 4.11 cl ass Machi ne

cl ass Machi ne

{
publi c:

unsi gned i nt nunber O ProcessG oupsCtf () const;
unsi gned i nt nunber O ProcessesO () const;
unsi gned i nt nunber O ThreadsOf () const;

unsi gned int threadToProcessGoup(unsigned int) const;
unsi gned int processGoupToThread(unsigned int) const;

static Machi ne* newQbject ();
#i f DI STRI BUTED

virtual Networké& thi sNetwork();
#endi f // DI STRI BUTED

b

73

The Machi ne object to be created is chosen by the static newCbj ect () member.
Currently, this function must be selected at compile time, though the function itself may
do run time configuration.

Current machine classesarethe Machi ne abstract baseclass, | PSCVachi ne for Intel
iPSC and Paragon computers, CMbMac hi ne for Thinking Machines CM-5, Uni x MPMVa-
chi ne for shared memory Unix machines where sharing occurs in only a single segment,
and Uni xMTI'Machi ne for shared memory Unix machines where entire address spaces are
shared.

4.4.2 Composite machines

Onemachineclass, Conposi t eMachi ne, reflects no particular physical machine but
instead reflects a composite machine made up of separate physical machines joined by an
external network. When a composite machine is constructed, the Conposi t eMachi ne
initialization code sel ects the proper |eaf machine and network types and creates them. Cur-
rently, theConposi t eMachi ne classsupportsUni x MPMachi nes connected viaaUDPNet wor K.
This configuration supports clusters of workstations in which individual workstations may
be multiprocessors.

Aside from support for networks of shared memory machines, the most significant dif-
ference between the composite machine interface and other existing systems supporting
workstation clusters is the meta-machine model used to design both the program and user
interfaces. In the meta-machine model, when multiple physical machines are aggregated to
create an abstract machine, a meta-machineis created. The meta-machine must be booted
like aphysical machine, can run multiple processes, and has asingle console that issimilar
to serial machines. The meta-machineis booted viaasingle command, met aboot , which
instantiates meta-machine processes on each physical machine and waitsfor applicationsto
makerequeststo berun onthemeta-machine. When an applicationwith Conrposi t eMachi ne
support is run, it first attempts to contact the meta-machine server to obtain configuration
information. If this attempt fails, it falls back to using the physical machine interface, cur-
rently Uni xMPMachi ne.

The goa of the meta-machine interface is to perturb the existing serial model as little
as possible. For example, in the common serial model, every program starts with two out-
put streams, st dout and st der r . If we wish to maintain our experience with serial pro-
grams, these streams should be maintained. The composite machine attemptsto support the
most useful extrapolation of serial abstractions. In the case of the standard streams, they are

74

reflected back to the process originally started at the command line and are, by default, line
buffered; while output from different processesisintermixed, thisintermixing happensonly
at line boundaries; therefore, the output remains relatively coherent. Optionally, every line
may prefaced by the processor index that caused the output.

Finally, initialization and termination of compositemachinesareimportant, bothinterms
of usability and reliability. Processes must start quickly and must halt quickly on exit and
error conditions. The meta-machine providestheformer by maintaining meta-machine pro-
cesses on each processor which can quickly fork and load an application when a parallel
application isrun. The meta-machine itself uses a more expensive protocol such asr sh to
gain access to the remote nodes, but thisis required only when booting the meta-machine,
which is again analogous to physical machines.

Error conditions are detected quickly via an interconnection of TCP sockets that will
immediately signal an error if a process dies unexpectedly. Thus, if the application user in-
terrupts arunning program viaakeyboard interrupt, al clients areimmediately terminated.
Furthermore, if any meta-machineprocessterminates, all other meta-machine processesand
application processes are immediately terminated, as they would be if a physica machine
crashed.

4.4.3 Network

The Net wor k classes implement areliable, unordered, complete, datagram intercon-
nection. The interface to the Net wor k class, shown in Interface 4.12, is again similar to

Inferface 4.12 cl ass Net wor k

cl ass Network
{
public:
Net wor k(unsi gned i nt number O ProcessG oups);
virtual " Network();

voi d send(Datagram&, unsigned int toProcessG oup,
unsigned int toThread);
voi d send(Datagram&);

i nt receiveReady() const;

Dat agram r ecei ve();
Dat agram r ecei vel f Ready() ;

75

the network operations provided by the Cl ust er class. Current network classes are the
Net wor k abstract base class, the | PSCNet wor k for Intel iPSC and Paragon computers,
and the CVbNet wor k for Thinking Machines CM-5. The Net wor k class interface has
been designed to be hierarchical, as would be required for two Ethernet-connected Paragon
machines, but support for such configurations has not yet been implemented.

444 |P networks

The APA provides the UDPNet wor k class to support meta-machines comprising ma-
chinesconnected by anetwork supporting the User Datagram Protocol (UDP) [83],[84], [85].
UDP is a user-level interface to the underlying Internet Protocol (IP) [86], an unreliable
datagram protocol. The UDPNet wor k classlayers on top of the UDP protocol areliability
and fragmentation protocol, both required because the UDP protocol is unreliable and has
a packet length limitation of 64,000 bytes. In contrast, the Transmission Control Protocol
(TCP) [87] layers on top of IP both reliability and a byte-stream model including support
for flow control. UDP was chosen as the implementation for several reasons. First, TCPis
a point-to-point protocol; thus, the number of active connections grows as the square of the
number of nodes in the machine. Further, the flow control protocol in TCP was optimized
for two types of applications: interactive terminal sessionsand bulk transfer of of data, both
over very large, lossy networks[88]. The characteristics of thisflow control are not optimal
inthe APA model for which distances are small, bandwidthslarge, and latency critical. The
stream orientation of TCP means that it does not recognize logical packet boundaries and
thus cannot be optimized for the case when sending the last part of a packet will enable fur-
ther computation on the destination node which cannot occur until awhole packet is trans-
mitted. Finally, because TCP will not deliver bytes out of order, though several packets may
have been received, the TCP protocol will not deliver those packets until al earlier data has
been received, even if retransmission is required. Since the APA interface does not require
ordered delivery, effort expended on ordering packets may lead to aloss of performance.

Though TCPisnot optimal for datagram processing, much of theflow control and recov-
ery theory can be applied with afew adaptations. In particular, TCP uses two window pro-
tocolsto deal simultaneously with congestion inthe network and receiver buffer limitations.
Both sender and receiver maintain windows into the data stream which indicate the active
range of data; the transmitter will not send data that does not fit within both of these win-
dows. The transmitter maintains the transmitter window information; it receives updated
receiver window information with every data or acknowledgment packet. The transmit and

76

receive window sizes are updated by carefully tuned heuristics [89]. While the whole flow
control system functions as a unit, the primary responsibility for congestion control, i.e.,
not overrunning the available network bandwidth, is held by the transmission window up-
date algorithm, while responsibility for not overflowing the receiver is held by the receiver
window algorithm.

The primary difference between the APA communication model and TCP is the lack
of point-to-point connections in the APA model. Where in TCP the receiver dways has a
buffer dedicated to the TCP connection, inthe APA thereceiver may receive datafrom many
sources simultaneously. Two aternativesare possible: dedicating fixed buffersto every po-
tential sender, or maintaining ashared pool from which buffers are allocated as needed. The
latter is more flexible in responding to unbalanced communi cation but makes it impossible
to advertise accurate receiver window information, since any subsequent data from another
source may immediately invalidate previous receiver window estimates.

The window protocol used in the current UDP implementation essentialy follows the
TCP protocol [88], with the exception that window sizes are fixed. The receiver window
sizeisfixed to alarge value and the transmit value to alow value, which is cal culated based
on the maximum packet size the network can support and the amount of buffer space avail-
ableinthekernel socket interface. Theretransmission protocol isidentical tothat of TCP[90],
including delayed and forced acknowledgements. Similarly, the TCP shutdown protocol is
used to ensure graceful shutdown.

4.5 Performance

Much of the originality in the APA liesin expression as opposed to performance. The
most significant low level performance issuein VLSI CAD applications is network com-
munication.

Network communication in the APA takes two forms. athin veneer above existing ser-
vicesprovided by MPPs; i.e., theNX library onthelntel Paragon[12], and the UDP network
which providesafull set of fragmentation and reliability features abovethe underlying UDP
protocol. The network interface incurs no measurable overhead over existing vendor pro-
tocols; nor does it improve on those protocols, although thisispossibleif high-level vendor
protocols do not provide the performance characteristics required by the target application
characteristics. Improvements in vendor protocols have not yet been investigated. In the
rest of this section, we consider message passing on the UDP protocol.

77

Tables 4.1 and 4.2 show communication round-trip latency and bandwidth on an I P net-
work for the APA and several workstation cluster message packages[91]. TCGMSG [92]
uses static TCP sockets which created at the time the program is started. In the configu-
ration tested, p4 [93] and PVM [14] both use dynamic TCP sockets which are created on
demand at first communication. The application under test isa simple program that sends a
packet to asingle other node which immediately sendsthe packet back. This procedure was
repeated 100 times, and the mean, variance, minimum, and maximum elapsed times were
calculated. The configurations for testing were slightly different between the APA and the
other systems. The APA experiments were done on two SPARCstations 2s connected to a
lightly loaded Ethernet; the workstations had normal system background tasksrunning. The

Table 4.1 Round-trip latency for IP message passing

Message Size Latency (ms)
(bytes) APA TCGMSG p4 PVM
mean | variance | min max

100 2.9 1.1 2.5 13.2 3.6 4.9 5.7
400 3.3 0.4 3.0 6.2 4.9 5.2 6.7
1000 4.5 0.5 4.1 8.6 5.9 6.3 9.2
4000 11.3 3.2 10.4 41.3 12.6 15.4 17.7
10000 26.7 14.1 22.8 118.2 23.4 32.8 42.5
40000 85.3 22.1 76.2 174.0 79.9 123.4 147.3
100000 412 589 184.7 | 2258 201.6 | 308.1 | 356.3
400000 1700 1296 739.6 | 6683 794.2 | 1213.4 | 1383.3
1000000 4378 2174 2097 9972 1978.0 | 3030.5 | 3479.3

Table 4.2 Bandwidth for IP message passing

Message Size Bandwidth (Kb/sec)
(bytes) APA | TCGMSG | p4 | PYM
100 67.9 55.6 | 40.8 | 35.0
400 233.8 163.2 | 153.8 | 119.4
1000 432.2 339.0 | 3174 | 2174
4000 689.0 635.0 | 519.4 | 452.0
10000 724.9 854.8 | 609.8 | 470.6
40000 916.0 1001 648.2 | 543.2
100000 475.8 992.0 | 649.2 | 561.4
400000 460.4 1007 659.4 | 578.4
1000000 446.1 1011 660.0 | 574.8

78

other systems shown were tested on SPARCstation 1 workstations on an isolated Ethernet.
Thetables show that the APA performance results are comparable to those of the other sys-
tems up to the socket buffer size in the kernel, limited to 50,000 bytes under SunOS 4.1.3.
Beyond this point, the transmitter overruns the receiver, and packets are dropped leading
to adrop in performance. The effect of packet dropping is clearly observable in the statis-
tics; while the minimum latency values are competitive with the other systems, the maxi-
mum value jumps to over two seconds, the APA retransmit time (adopted from TCP). The
dropped packets result in a significant increase in both the mean and variance of the trans-
mission time.

Packet dropping is caused by the lack of receiver windows and asynchronous acknowl-
edgements in the APA. Furthermore, because TCP isintegrated into the kernel, service la
tency for network traffic is much lower than in the user-level APA case. Only a limited
amount of tuning has been performed on UDP network interface; it may be possibleto im-
prove performance by adjusting transmitter window sizes and acknowledgement and re-
transmission timeouts. Other characteristics of the APA algorithm could be varied as well.
For example, under SunOS when anew packet comesin and thekernel buffer for the socket
isfull, the new packet overwrites the older packet, effectively dropping the older packet in
favor of the newer. The protocol in the APA—adopted asit isfrom TCP—is not tuned for
this case. Therefore, it is possible to tune the APA agorithm to detect the case in which
overrun isoccurring and to take action to reduce the flow of data. Another potential method
for improving performance is the use of interrupt-driven 1/O to decrease service latency. It
may not be possible to achieve latency comparable to kernel-service, which might require
resorting to a kernel protocol such as TCP.

We conclude this chapter with an evaluation of the design and implementation of the
APA, followed by areview of other systems with similar functionalities.

4.6 Evaluation

4.6.1 Expressibility

Theparametric expressibility of the APA thread management model can bedemonstrated
by considering the mapping of contemporary architectures to the model. Table 4.3 shows
the number of each type of thread management object for a number of common parallel
architectures. The first number in each triple represents the number of Pr ocessG oups
per Cl ust er , the second represent the number of Pr ocesses per Pr ocessG oup, and

79

Machine APA Configuration
Figure 4.1 architecture 3/2/3
16 node Intel iPSC 16/1/1
4-processor Sun 4/600MP 1/4/1
Two 4-processor Sun 4/600M Ps 2/4/1
connected via Ethernet
Intel 64 fat node Paragon 64/1/4

Table 4.3 APA ftriples for various machines

the last represents the number of Thr eads per Pr ocess; the total number of threadsin
the abstract machine is the product of the triple elements. Of particular interest are the last
two rows in the table, an IP-connected pair of Sun multiprocessors and an Intel Paragon
with fat nodes; the Paragon is a mesh-connected multicomputer; when configured with fat
nodes, each node contains four processors sharing a single memory module. In contrast to
most previouswork, the APA represents machinesthat are hybrids of shared and distributed
memory architectures. The APA isnot restricted to architectures that can be expressed by
triples of the form above, e.g., uniform numbers of Pr ocesses per Pr ocessG oup.

4.6.2 Factorization

The design of the APA interface has enabled aggressive factorization of the implemen-
tation code. Table 4.4 gives the total number of lines of code in the APA and the number
of lines of machine-specific code for several configurations. The goal of factorizationisto
share code to the greatest extent possible without violating the constraint that the factoring
process not contribute significant overhead. Factoring common code facilitates portability
by minimizing theamount of codethat must be changed to support new operating systemin-
terfaces. It also facilitates maintenance; since code is not duplicated, when errors are found

Table 4.4 Lines of code in APA

Machine Lines of Code
Encore Multimax 357

Intel iPSC/2, iPSC/860, & 610
Paragon

Sun SPARC 117
APA Totd 13800

80

it is not necessary to search for the same error in every copy of the code. Finaly, factor-
ing facilitates optimization, since the optimization of a segment of shared code benefits all
clients.

4.6.3 Optimization

A primary goa of the APA design was an interface which provided multiple access
points, which allows client code to trade generality for performance. For example, the APA
provides generic memory allocation serviceviatheCmal | oc() andfree() functions,
or the equivalent Ct* : : operat or new() and: : operator del ete() functions.
These operations must do a number of tests to determine the size of the object being alo-
cated or deallocated and whether the the objects are or should be in shared or private mem-
ory. In casesinwhich the semantics of the program statically define what these values must
be, Reser voi r member functions can be used directly, bypassing those checks that are
no longer necessary.

4.6.4 Limitations and extensions

In the remainder of this section, we consider limitations of the current interfaces. We do
not consider issues that are particular to the current implementation and thus are of limited
value to others.

4.6.4.1 General

The most significant abstraction missing from the APA is a representation of proces-
sor performance and load. For homogeneous machines running in a batch mode, where a
program has exclusive use of al resources, measuring performance and load is generaly
noncritical. However, in environments in which neither homogeneity nor exclusivity exist,
itisdifficult to balance load to achieve good processor utilization. With a growing number
of heterogeneous workstation clusters and specialized machine architectures, e.g., the Cray
3/SSS, a method for representing load and performance would find immediate use.

The issue of performance has been considered during the course of this research, not
so much to propose a solution, which is beyond the scope of this work, but to ensure that
the solutions devel oped would not restrict or preclude addition of load information in the
future. Based on the success of the factorization of the APA into separate logical compo-
nents, the thread management classes, and physical components, the machine classes, we

Figure 4.6 APA dimensions

82

herency model. Under these models, different processors generally will not see different
orders of memory operations; while the relative timing of loads and stores may change, all
processors see loads and stores originating from a particular processor in a consistent or-
der. Newer machines have implemented weaker memory modelsfor which processors may
see changes in the order of operations generated by an individual processor. These models
also incorporate new instructions which alow the program to signal to the hardware that
the machine must be brought to a consistent state before progress can continue. The APA
represents none of these low-level issues, and with the lack of commonality in the various
coherency models being developed, it is unclear whether a single interface could be devel -
oped.

4.6.4.4 UDP Support

The most significant divergence between the TCP protocol and the current implementa-
tionisthelack of interrupt-based packet processing, which has proven to be acritical issue.
In the current implementation, if the application is not ready to receive a packet, the UDP
network will not receive packets from the network interface. Originally, it was anticipated
that higher-level protocolswould poll the network interface sufficiently often. However, the
acknowledgment and retransmission scheme in TCP was developed under the assumption
that the TCP driver would receive and respond to packets within a time much shorter than
any of the protocol timeouts. This difference is exacerbated by the fact that the receiver
window was enlarged to reflect shared resources. In effect, only a few thousand bytes of
data can be delivered if the transmitter and receiver are not attempting to write and read at
the same time. The result is that transmitters often overrun receivers, especialy if the ap-
plication is compute-intensive. The solution to this problem, the use of interrupt based 1/0,
isrelatively straightforward.

4.7 Other Models and Implementations

A significant number of models and implementations have been devel oped to provide
facility similar to that of the APA. Most previous work has been either for multiprocessors
or multicomputers, but some recent work has addressed the type of hybridsincluded inthis
work.

There has been a significant amount of work done on message passing interfaces. MPP
manufacturers such as Intel and Thinking Machines support propriety interfaces on their

83

machines. Recently, ARPA and NSF sponsored the devel opment of anew standard for mes-
sage passing, MPI. Thisinterface is similar to the MPP interfaces and includes extensions
to improve flexibility.

4.7.1 PVM

Probably the most widely used softwarefor parallel processingis PV M, the Paralldl Vir-
tual Machine[94], [14]. PVM enables parallel programsto berun on IP-connected worksta-
tions and on massively parallel machines by using vendor-supplied communication primi-
tives. Thelibrary provides C and FORTRAN interfaces for synchronous and asynchronous
message passing and provides support for heterogeneity of processing elements, bothin data
representation and processing power. Included tools provide particularly strong support for
machine configuration, debugging, and performance analysis.

A program running on a PVM machine has a number of processes on each CPU and
one pvnd daemon process on each node. In the default communication mode, interclient
communication occurs via TCP sockets to the daemon on the local node, via UDP between
daemons on the source and destination nodes, and again via TCP between the daemon and
client on the destination node. The user may elect to route messages directly in someimple-
mentations. When this option is chosen, point-to-point TCP connections are made between
clients that wish to communicate.

In addition to raw communication, PV M provides support for groups of tasks, and some
implementations now support message passing via shared memory segments, though these
segments are not exported through the interface to client code. Recent work has reported
experiences adding user-level threads to PVM [95]. PVM does not provide direct support
for shared memory, synchronization, or memory management.

472 pd

Developed at the Argonne National Laboratory, p4 [93] provides a send-receive model
on workstation clusters via TCP sockets. The p4 library isathin layer above the socket in-
terface, which generally reduces problems of initialization and shutdown. The p4 interface
also provides shared memory primitives on machines that provide them but does not pro-
vide support for memory management within those primitives. Thelibrary p4 includesa set
of reduction primitives similar to PVM.

4.7.3 TCGMSG

TCGMSG [92] providesasend-receive model on various M PP and | P-connection work-
stations. On |P-connected machines, TCP is used as the transport protocol. On MPPs, the
native operating system callsare used. On multiprocessorssupporting shared memory, mes-
sage passing is done via shared memory.

4.7.4 MPI

MPI [13] is a standard interface with message passing functionality. It is an inclusive
standard that includes virtually all styles of send-receive communication, support for group
protocols, reductions, and noncontiguous data structures. The APA does not provide the
complete set of features availablein an interface such asMPI. However, sincethe APA pro-
vides a standard interface to both shared memory and message passing, it would be moder-
ately easy toimplement an MPI interface on top of the APA. One of the moreinteresting as-
pects of such an implementationwould be support for message passing primitiveson shared
memory architectures which is straightforward when the APA isused but rare in other im-
plementations. Moreover, support for hybrid machines would be automatic.

85

Chapter 5
META-PROGRAMMABILITY

TheActor Interface hasbeen designed to provide ahigh degree of meta-programmability
by providing an open implementation, also called areflectiveinterface[96]. Meta-program-
mability refersto the ability to ‘ program’ the actor mode, i.e., to be able to specify aspects
of the operation of the run timelibrary. For example, the actor model specifies that contin-
uations are unordered, that they may be scheduled in an arbitrary order. Through the meta-
programming interface of the AlIF, an application can influence the order in which continu-
ations are executed.

In addition to local influences such as scheduling, an application may require a global
control of the operation of the system. For example, in [97] areliability protocol is devel-
opedfor providing fault tolerancein actor systems. The AlF supportsgloba meta-programmability
via a meta-circular, open implementation. Run time support is implemented via a number
of library-supplied aggregates that perform operations such as continuation scheduling and
name resolution. By deriving and instantiating an application-specific type from a system
aggregate type, the run time can be extended to support new protocols and features.

5.1 Local Meta-programmability

L ocal meta-programmability encompasses per-class meta-programmability, i.e., theabil -
ity to influence the operation of the actor system on a class-by-class basis. Loca meta-
programmability isimportant when viewed from the criteria of composability. If al meta-
programmability features are implemented as global, aggregation of program modules is
restricted to the case in which those modules utilize only compatible features.

86

Thelocal meta-programmability features of the AlF are prioritized scheduling, first class
continuations, first class values, aggregate distributions, and aggregate representative selec-
tion.

Before discussing the meta-programmability features, we require a new concept, gen-
erally one not explicitly manipulated in an actor system. The new object is atask [51], an
object representing an executable context. A task is created when a continuation is called;
it isacombination of a continuation and the arguments to the continuation, which is analo-
gous to afunction pointer in the serial, procedural case. Just as a function pointer requires
a set of arguments before a call can occur, a continuation requires an argument beforeit is
considered an executable entity. In the AIF, calling a continuation with an argument creates
atask, represented by the AIF class Task, which the the run time system then schedules
for execution.

5.1.1 Prioritized scheduling

The pure actor model does not specify an ordering on the execution of tasks; it guar-
antees only fairness [51]. This characteristic implies one of two choices: the application
must implement a scheduling protocol that guarantees that tasks are created in such an or-
der that progress is made on the computation, or that the run time system is responsible for
determining an ordering of tasks which results in acceptable performance. Both of these
alternatives suffer from significant drawbacks. In the former case, each application must
include a scheduler, which implies both a significant degree of duplication of effort and a
loss of composability, since the scheduling is being done on an application basisrather than
on aper-class basis. The latter case, in which the run time system determines the order, is
infeasiblein general without communication between the application and the run time con-
cerning the relative importance of tasks.

Our approach to solving this problem is to address the latter aspect, the lack of commu-
nication between the application objects and the run time scheduler. The run time system
defines a priority interface from which the programmer can define new priority types. Pri-
orities can have total or partial orderings among them. Each priority a'so may specify task
gueue types that the run time uses to store and schedule tasks. The foremost goal of the
priority system design was a system that supports composable priorities, i.e., an interface
that can be used in modules in any manner required by the application without sacrificing
the ability to compose modul estogether. The run time system uses the priority interfacein-

Figure 5.1 Task queues

Interface 5.1 cl ass TaskQueue

cl ass TaskQueue

{
public:
TaskQueue(const Priority&);
virtual ~TaskQueue();

virtual void add(Task&) = O;
virtual Task renove() = O;

virtual int isEnpty() const = O;

virtual const Priority& priorityOf() const;

Figure 5.3 Heterogeneous lexicographic priorities

89

Test Priority asits second symbol, the comparison would have continued, based on
data in the ATPG-specific portion of the priority value.

Heterogeneous lexicographic prioritiesareimplemented viaapair of coupled interfaces,
PriorityandPriorityConpar at or,presentedinInterfaces5.2, and 5.3 respectively.
Priority comparator classes determine two properties: where the priority classes fit within
the derivation tree, and the ordering of objects lower in the tree.

Theunary conpar e functionisused to determine the queue within which to enqueue a
new task. For example, theunary conpar e fortheTest Pri ori t yConpar at or class,
is defined as

i nt

Test PriorityConparator::conpare

(const PriorityConparator& queueConparator)

{
if (dynam c_cast<TestPriorityConparator*>(& evel)) {
/1 The queue uses a TestPriorityConparator so this is
/1 the correct queue.
return O;
} else {
/!l Let the class above in the derivation tree make
/1 the deci sion.
return UserPriorityConparator::conpare(queueConparator);
}
}

Intferface 5.2 cl ass Priority

class Priority

{
public:
virtual “"Priority() = 0;
virtual PriorityConparator& conparatorO () const;
virtual TaskQueue* newTaskQueue(const Priority&) const;
H

Interface 5.3 cl ass PriorityConpar at or

class PriorityConparator
{
publi c:
virtual int conpare(const PriorityConparator&) const;
virtual int conpare(const Priorityg&,
const Priority&) const;

90

Thebinary conpar e functionisusedto determinetherelative order of tasksand queues
within aqueue. For the test queue, this function simply returns the result of comparing the
bit vectorsin the priorities (Chapter 6).

The ability to prioritize tasks has proven instrumental in the parallelization of CAD al-
gorithms|[1] and other applications[74] even when restricted to homogeneous priority rep-
resentations [69]. It is anticipated that support for heterogeneous priorities will facilitate
aggregation of modulesthat require conflicting representations, asisthe casefor Pr oper -
HI TECin Chapter 6 and Pr oper PROOFS in Chapter 7.

5.1.2 First class continuations

Because continuations arefirst class, i.e., can be copied and manipulated by application
code, a wealth of concurrent control structures can be represented [5]. The continuation
interfaces were considered in detail in Chapter 3 and are not repeated here.

5.1.3 First class values

The actor model is call-by-value, i.e., parameters to method invocations are copied, as
shown in Figure 5.4. In CAD and other medium-grain applications, the cost of copying an
argument can be considerable. In these cases, it is desirable to be able to access the actual
value—the actual storage location—to be used in acontinuation call. For thisfunctionality,
the AIF providesfirst class value types. First class values or very similar abstractions are
called messagesin both Concurrent Aggregates[5] and Charm [69]. Wewill prefer theterm
value to message as it helps distinguish the values and tasks in the actor model from the
messages of send-receive models.

First classvalues are represented by thelibrary classVal ue (Interface 5.4). Eachvalue
typeis acontainer of a single instance of the template type parameter. Values are manipu-
lated by the application by defining actor methods which take a Val ue<Type> asan ar-
gument. Using first class values, the actor method declaration

voi d Actor Type: : Met hodNarme(Argunent Type);
would be replaced with
voi d Actor Type: : Met hodNanme(Val ue<Ar gunent Type>);

In general, value types can be used anywhere an object of the template parameter type can
be used.

Figure 5.4 Call by value and first class values

Inferface 5.4 cl ass Val ue

tenpl ate <cl ass Type>
class Value : public Val ue<Generic>

{
publi c:
Val ue();
Val ue(const Type&);
Val ue(Val ue<Type>&);
“Val ue();

Val ue<Type>& operator = (Val ue<Type>&);
virtual Val ue<Type> copy() const;
voi d* at();

operator Type& ();
operator const Type& () const;

92

By using first class types, an application gains control over the scope of the object. For
example, if an object calls a continuation with an object

Argument arg (... /* Argunent constructor parameters */);
Act or Type: : Met hodNane: : Conti nuati on(nanme)(arg);

a copy of the argument ar g occurs. Because the value sent to the method invocation is
constructed within the run time, the application must construct an object, copy it via the
continuation call, and then destruct the original. When first class values are used, the copy
can be eliminated by constructing the value used by the run time

Val ue<Ar gurent > val ue;
new (value.at()) Argunent (...);
Act or Type: : Met hodNan®e: : Conti nuati on(anActor Name) (val ue);

The example calls the value at () member to extract the address of the buffer of the un-
constructed object within val ue and then uses the Ct* placement new syntax to construct
the argument in place. Finaly, the value is passed to the continuation.

Inasimilar manner, the scope of the object can be lengthened at method invocationtime.
When an actor method is defined with native types, e.g.,

voi d
Act or Type: : Met hodNane(const Argunent& arg)
{

}
the scope of the object referred to by ar g is the duration of the function call. Any pointer
or reference to ar g stored becomes dangling after Met hodNanre returns. If, instead, the

method is defined to take aVal ue instance:

voi d
Act or Type: : Met hodNane(Val ue<Argunent> arg)
{

}
the scope of theargument can belengthened by copy constructing or assigning the parameter
to another value object

Val ue<Ar gument > save;

voi d

Act or Type: : Met hodNane(Val ue<Argurent> arg)
{

}
The scope of the value now becomes the scope of the assigned value, inthis case, file scope.
Copy construction, assignment, and continuation calls al consume Val ues; trying to ac-
cess the contents of a Val ue object after it has been consumed results in an exception.

save = arg;

93

First class values are usually handled completely within the library, but for reasons of
efficiency, flexibility, and resource management, the may be manipulated by the application
explicitly. First class values are most often used in CAD applications when data structures
aredistributed, i.e., the datarepresenting the circuit. Copying of this data takes a significant
amount of timeand may limit the size of problemsthat can be addressed, since an extracopy
impliesthat there must be memory available to hold two copies of the circuit.

5.1.4 Aggregate distributions

The original aggregate model allows the specification of the number but not the place-
ment of the representatives aggregate [5]. In medium-grain applications, placement of rep-
resentatives can be crucia to achieving acceptable performance. I1n addition to performance
issues, the ability to conditionally coerce aggregate names to object pointers exposes ag-
gregate distribution to the application in away not present in the original model that uses a
uniform address space model.

The AlF supportsdescriptionsof aggregatesviathelibrary classDi st ri but i on, shown
in Interface 5.5. Distributions specify the number and location of representatives of an ag-
gregate. Theinterface of the abstract Di st ri but i on classis genera enough to express
both enumerated and algorithmically computed distributions. Distributions are bound to
aggregates viaan optional argument supplied when NewAct or Met hod continuations for

Inferface 5.5cl ass Di stri bution

class Distribution
{
public:
Distribution();
Distribution(const Distribution&);
virtual “Distribution();

virtual int nunber O RepresentativesOf () const = O;

virtual int nunberOf RepresentativesOnThi sThread() const = 0;
virtual int indexOf ThreadRepresentative(int) const = O;

virtual int nunber O Representativesl nThi sProcess() const = 0;
virtual int indexOFProcessRepresentative(int) const = O;

virtual int nunber Of RepresentativeslnThi sProcessGoup() const = O;
virtual int indexCOfProcessGoupRepresentative(int) const = O;

94

aggregate types are created. If no distribution is supplied, one representative is created on
every thread.

The AIF provides three standard distributions based on the APA, Per Thr ead, Per -
Process,andPer ProcessG oup. Aggregatescreated withthesedistributionswill have
one representative for each of the related APA objects. Since the APA configuresitself au-
tomatically when an application isinvoked, no further user codeis necessary. Per Thr ead
distributions may be used to represent data private to individua threads; member functions
and data of representativesin aggregates created with Per Thr ead distributions can be ac-
cessed by other actors allocated to the same thread without the possibility of race conditions.
In thisway, Per Thr ead aggregates find their most common use in task and data parallel
models. Per Pr ocess G oup distributionsare often used to represent read-only or, in con-
cert with the use of Senmaphor es, write-rarely data. 200z The availability of APA-based
distributions is an example of the trade-off between expressibility and generality. In some
respects, the ability to specify location of aggregate representatives and the ability to condi-
tionally resolve actor and aggregate names to object pointers represent a weakening of the
high-level actor model. However, many medium-grain applicationsrequire or benefit from
some amount of architecture-specific customization, even if this customization consists of
simply copying data into all address spaces in a distributed memory machine. This func-
tionality is so commonly required that making it difficult would serve no purpose except to
limit the usability of theinterface, whichwould result in applications bypassing the actor in-
terface and dealing directly with the APA. While the complete APA interfaceisavailableto
actor applications, it is desirable to regularize common architecture-specific optimizations,
thus reducing the need to reinvent these algorithms numerous times.

5.1.5 Actor and aggregate placement

The location of an actor or an aggregate may be selected by the application by an op-
tion argument to the new method continuation constructor. 1n the absence of the argument,
placement israndom. Aggregates may have meaningful placementsif the size of the aggre-
gate does not encompass all processors in the system.

5.1.6 Representative selection

The original aggregate model specifies random representative selection [5]. In afine-
grain environment in which aggregates are used solely for their nonserialized interface, this

95

selection may be sufficient. In medium-grain applicationsin which aggregates are used for
data distribution as well, random selection is often not desirable.

The AlF supportsrepresentative sel ection on aper-method basis. By adding aresolution
function to the nested actor method class, thedefault resolution, * closest’, can be overridden.
For example, in Pr oper PROCFS, the Si nul at e methodiscalled by the user interfaceto
begin fault simulation within the fault simulator aggregate. Since the Si nul at e method

should be called for each representative, the Si mul at e method is declared as
class Simulate : protected Method<Voi d>

{
Act or Met hodOF (Voi d) ;

static Aggregat eNane<Faul t Si mul at or Aggr egat e>
resol ve(const Aggregat eNanme<Faul t Si mul at or Aggr egat e>& nane) {
return nane. al | Representatives();

b
1
Ther esol ve function takes as an argument an aggregate name and returns an aggregate
namethat isbound to arepresentativeor to all representatives, created by r epr esent ati ve()
andal | Represent ati ves(), respectively.

One of the interesting aspects of representative selection as implemented in the AlF is
the handling of broadcasts. Virtually all systems that handle broadcasts do so by using an
imperative variant of a send operation, which implies that the decision of unicast versus
broadcast is made at the time of continuation execution and is made by the sender. In con-
trast, in the AIF the client is not required to decide whether to use unicast or broadcast,
and often the client is unaware of which mechanism is being used. In our experience with
CAD applications, the construction of the algorithm is generally such that it is the object
on which the continuation is being called that logically holds the responsibility for the uni-
cast/broadcast choice. The lossless coercion of aggregate names to actor names, i.e., with-
out loss of representative selection, should also facilitate incremental parallelization. When
it isdetermined that an actor has become the bottleneck in acomputation, an aggregate with
the same interface can be substituted in its place. Client code that uses actor names till
functions as before with the aggregate implementation.

5.2 Global Meta-programmability

Three library classes work together to support the operations of actor creation and task
routing and scheduling. The Di r ect or aggregate controls the thread on each processor,
passing control to individual actors to execute tasks by using the policy described in Sub-
section 5.1.1. The NaneSer ver aggregate maintains actor and aggregate name binding

96

information, resolving names as continuations are called. The Qui escenceDet ect or
aggregate monitors the state of the abstract actor machine and detects idle conditions.

Global meta-programmability can be achieved by deriving new, application-specific classes
from the library-provided types. These changes are global; they affect all modules linked
with the new class. Such changes are also generally not composable; although it is possi-
ble to use multiple inheritance to combine two application-specific system aggregate types,
such aggregation must be done manually, and the potential complexity of the problem raises
significant doubt as to the feasibility. Because system aggregate customization is global,
the set of conditions under which this type of meta-programmability is applicable is more
specialized. Thus, global meta-programmability generaly finds less application than does
local meta-programmability. Thus, while priorities are used by classes to solve modular
problems, derivation of anew Di r ect or type is more appropriate to change global sys-
tem properties such asreliability [97], [98], [99]. TheDi r ect or aggregate also provides
an object-level interface which alows limited customization without the use of derivation.
All system aggregates have Per Thr ead distributions.

5.2.1 Director

TheDi r ect or aggregate, derived fromboththe AIF Aggr egat e and APA Thr ead-
Manager classes, controlsthe thread on each processor, maintainstask queues, and passes
control to individual actors to execute continuations by using the policy described in Sub-
section5.1.1. TheDi r ect or aggregate createsand communicateswiththeNanmeSer ver
and Qui escenceDet ect or aggregates. It informsthe NaneSer ver when actors are
created and destroyed in order that name binding information can be updated.

Thepublicinterfaceof theDi r ect or classisshowninInterface5.6. Thereisnodirec-
tor instancein thelibrary; it must be manually declared by the application. Generally, most
actor applications have asimplemai n() routine that simply instantiates a director object
and then, on onethread, creates auser interface object that drivestherest of the computation

i nt
main(int, char*[])

{

Director director;

if (director.isFirst()) {
Userlnterface:: New : Continuation()();
}

97

Interface 5.6 cl ass Direct or

class Director : public ThreadManager,
publ i c Aggregate

{
publi c:
Director();
virtual "Director();
static Director& thisDirector();
voi d shutdown();
voi d notifyAt Qui escence(const Continuati on<Voi d>&);
b

Asthe APA Thr eadManager object from which it is derived, the Di r ect or controls
the thread from within its destructor. The body of mai n functions as an anonymous ac-
tor method and is generally used to call a continuation responsible for performing the body
of the application. As mentioned in Subsection 4.1.5, the number of times mai n is exe-
cuted is not defined by the APA; code usually should be conditioned by thei sFi r st ()
predicate inherited from the Thr eadManager base class. Actors can gain access to the
director on which they are running by the statict hi sDi r ect or () call, analogousto the
t hi sThread() call inthe APA.

The director mediates the interface between applications and the Qui escenceDe-
t ect or aggregateviathenot i f yAt Qui escence() method. Operation of quiescence
detection is described in Subsection 5.2.3. If the Qui escenceDet ect or detects quies-
cence with no continuations on the notify list, it informs the director, which performs an
orderly shutdown. The shut down() method may be called by application code to effect
normal shutdown without regard to quiescence.

5.2.2 Name service

The NaneSer ver aggregate is responsible for coordinating the allocation, distribu-
tion, and resolution of actor and aggregate names within the system. This coordination in-
cludes all ocating names that are unique across al processors, routing actor method callsto
the appropriate processor for execution by the Di r ect or , and maintaining binding infor-
mation as new actors and aggregates are created.

98

TheDi r ect or aggregatecreatestheNanmeSer ver aggregate and informsthe Nane-
Ser ver when actors are created and destroyed in order that naming information can be
updated. When continuations are called on actor names that are not completely resolved,
the actor name requests that the NaneSer ver aggregate forward the name by using the
binding information it maintains. The NanmeSer ver consultsits internal name database
and takes action, depending on the state of the binding of the name. If a complete binding
exists in the database, the forwarded name is updated in place and is re-sent.

If the name is unbound, the task being forwarded is temporarily enqueued within the
NaneSer ver , pending the arrival of binding information. Binding information is added
when a new actor is created; for every actor created or destroyed, the director informs the
NaneSer ver representative. The NameSer ver protocol never broadcasts names; suffi-
cient binding informationiscommunicatedin al requestsfor theNaneSer ver tomaintain
all bindings via unicast continuations. Tasks resulting from continuations called on unre-
solved names are never forwarded to intermediate nodes. Instead, the task is temporarily
enqueued within the NanmeSer ver , and, if necessary, a query for binding information is
made to the appropriate NanmeSer ver representative. When the binding information is
available, it is returned to the requesting representative which uses it to route the task di-
rectly to the destination thread. Binding information is maintained in order that once are-
guest has been made, it is not repeated.

The binding information maintained by the NaneSer ver isaso used to perform actor
and aggregate name-to-pointer coercion.

5.2.3 Quiescence

TheDi r ect or aggregate coordinates its action with a quiescence detection aggregate
to determine when the system isidle; i.e., there are no pending tasks. Because the actor
model is event driven, an actor system that has become idle will not change state unless an
outsideevent occurs. Any actor may passtotheQui escenceDet ect or ,viatheDi r ect or
aCont i nuat i on<Voi d>instance. This continuationwill be executed when quiescence
is detected.

Whilein many cases convenient, the usefulness of quiescence is debatablein amodular
environment. Quiescenceisnot acomposable property and modulesthat rely on quiescence
detection areinherently noncomposable. Since quiescenceisdefined as no pending tasksin
the system, any activity, no matter how innocuous, will keep the overall actor system from

99

achieving quiescence. If amodule is written to progress in phases separated by quiescent
states, outside activity can inhibit the module from making progress indefinitely.

A good exampleof thelimitsof quiescence detection istheimplementation of the quies-
cence detection algorithm itself. The quiescence detector object must hide the tasksimple-
menting the detection processfrom the processitself, or quiescencewould never be achieved.

While quiescence is not composable, it can be used with care on an application level.
Thequiescence protocol inthe AlFisan extension of that implementedin Charm[100],[101],[102].
However, the AlF implementation of quiescence is open; the ability to hide tasks from the
guiescence detector is provided to applications as well as being used within the detector it-
self. Asin the case of representative selection, selective quiescence hiding is provided by
amethod function. For example, Pr oper PROOFS, described in Chapter 7, does fault re-

distribution viaamethod Spl i t which is hidden from the quiescence detector:

class Split : protected Method<int>

{
Act or Met hodOfF (int);

static int representsWrk() { return 0; }

b
5.3 Evaluation

5.3.1 Prioritized execution

The priority system isgeneral enough to allow composition of moduleslikethe Test -
CGener at or classfrom Pr oper H TECand the Faul t Si mul at or Aggr egat e from
Pr oper PROCFS. A potential problem isthe cost of adding tasks to the multilevel queues
which requires anumber of operationswhich scaleslogarithmically in the number of levels.
Thisnumber of operationsdirectly affectsthe minimum useful grain size on some machines.
Whilethe value of generality for the target applicationsjustifies the cost, techniquesfor op-
timizing the addition of new tasks would be beneficial.

5.3.2 First class tasks

During implementation of the quiescence detector, the benefit of having first class tasks
available to the application became apparent. Furthermore, since the run time system ma-
nipul ates tasks explicitly, an open implementation should provide an application interface.
Currently, with first class continuations, one level of indirection is achieved: an actor can
create a continuation and pass it to client code to execute when a certain set of events oc-
curs. The client code is independent of the actor and the method which will be called, and

100

a degree of modularity is attained. However, the client is still dependent on the argument
type of continuation and must provide the argument when the continuation is called. An
even greater degree of the expression is attained if the the continuation and argument are
combined but not executed; the result is atask (or thunk [103]). An interface to the task
types would improve the expressibility of the system. Some effort has been expended on
developing an interface for tasks; the most significant barrier appears to be the generation
of an interface that is statically type safe.

5.4 Other Models and Implementations

5.4.1 Concurrent aggregates

Concurrent Aggregates [5] provides support for first class continuations and messages.
Continuationsin CA taketwo forms: user, much likethoseinthe AIF, and true continuations
in the sense of encapsulating the complete run time context. Messagesin CA fill therole of
both first class values and first class tasks, since they contain both the method argument list
and the name of the target actor.

5.4.2 Charm and Charm++

Charmwasone of thefirst distributed actor model sto i mplement advanced meta-programmability
features, and the Actor Interface incorporates extensions of many of the featuresin Charm.
Themost significant differencein the area of meta-programmability isthe emphasison com-
posability inthe AIF.

Charm provides first values, called messages, but does not provide a call-by-vaue in-
terface; the application may pass only message types and is always responsible for alo-
cating and deallocating messages. Concurrent collections in Charm, called branch office
chares, have a fixed distribution with one representative per thread. Representative selec-
tion is specified at the call point by passing an argument which is either a representative
index or the pseudoindex ALL.

Charm provides severa globa meta-programming interfaces, selected at thetime an ap-
plication is linked. Prioritized execution is chosen at link time by selecting from a set of
priority modules[74]. Since thereis only one module per executable, al priorities must be
used uniformly across an application. Supported priority values are integer and bit vector.
Supported queue types are stack, queue, and a deque that dynamically selects head or tail

101

insertion depending on its length. There is no published interface for adding new priority

value types and new queue types.
Charm also providesaglobally selectableload balancing module. In addition to random

placement, Charm provides three adaptive load balancing modules. Charm also allowsthe
specification of manual placement.

102

Chapter 6
PARALLEL TEST GENERATION

Despite concerted effort, automatic test pattern generation for sequential circuitsremains
one of the most time consuming tasks in the integrated circuit design process. Expertsin
thefield of ATPG and integrated circuit manufacturing have expressed concern not only for
reducing run times and improving test coverage but also for the feasibility of maintaining
current levels of performance and quality on increasingly complex circuits.

The potential for the use of increasingly available parallel platforms makestest a prime
candidate for parallelism. Yet, the use of parallelism in solving the ATPG problem remains
inconsequential, even in the face of severa proposalsfor paralel ATPG. Thislack of useis
duein part to the fact that many of the algorithms previously produced are tightly tied to a
particular architecture; while parallel platforms are increasing in number, the number of a
particular typeisstill relatively small.

Much of the difficulty of parallelization of test stemsin large part from the inherent ex-
ponential complexity of ATPG. Thiscomplexity makes careful algorithm design and imple-
mentation critical; even small variationsintroduced by the parallelization process can have
adramatic impact on performance and resultant quality. Many parallel implementations of
ATPG have been developed from the ground up and have diverged significantly from ex-
isting ATPG agorithms, which has produced results that either fail to achieve significant
multiprocessor utilization or suffer from a significant lossin quality.

In this chapter, we present Pr oper HI TEC, a parallel implementation of the H TEC
program for sequential ATPG. In the Section 6.1, we briefly review test generation. In the
Section 6.2, we discuss the organization of the Hl TEC sequential test generator. In Sec-
tion 6.3 we summarize existing methods and applications for parallelizing test generation.
In Section 6.4, we consider modifications to Hl TEC necessary to support actor-based par-
aldism. In Section 6.5, we discuss the implementation details of Pr oper Hl TEC. Sec-

103

tion 6.6 summarizes the performance of Pr oper H TEC on a number of circuits in the
ISCAS-89 benchmark set [104].

6.1 Test Pattern Generation

Most computationally intensive CAD problems can be viewed as either search prob-
lems or optimization problems. We consider here test pattern generation, a form of search
problem. Test patterns are sets of inputs to integrated circuits that are applied to fabricated
devices to determine if any defects occurred during the manufacturing process. The output
patterns produced by adevicein responseto thetest patterns are compared against expected
results, and the deviceisrejected if the patterns do not match. Generating a set of tests that
ensure that no device containing a defect is erroneously flagged as good is extremely diffi-
cult for contemporary chips that contain millions of transistors.

We illustrate with an example. Test generation for a particular fault on a ssimple chip
might reduce to finding aset of Boolean assignmentsto inputsa through 4, such that afunc-
tiont = a(b+ c(def + g) + h)d + be istrue. The simplest way to find such an input isto
search for one: we start by assigning an input, for example a, to aone. In the example, the
resultisb+ c(def + g) + h)d; therefore, another input ischosen and the processiis repeated.
If assigning an input resultsint = 1, that set of inputsisatest. If, however, the result is
t = 0, thismeans only that that set of inputsis not a test, not that no test exists, although
thisisapossibility. Each of the earlier assignments must be retried with a value of zero.

The problem of finding a set of inputs that yield a one is called satisfiability [105], a
well-known NP-complete problem. Members of the class of NP-complete problems have
the characteristic that the number of possible solutions that must be examined grows expo-
nentially with the number of inputs, making naive enumeration impossible. Instead, heuris-
tics are used to try to ‘guess well’. In this context, heuristics are mathematical functions
that can be evaluated for each potential guess; higher values indicate better guesses. For
heuristic functions with certain properties, algorithms exist which guarantee optimal per-
formance [106]. The art of search isthe art of finding good heuristics.

Given aset of heuristics, the process of parallelizing searchisrelatively straightforward,
one simply evaluates multiple possible solutionsin paralel. When no solution exists, near
perfect speedup is observed. However, when a solution does exist, the effectiveness of the
parallelization effort depends directly on how much extra search is done beyond that neces-
sary in the serial algorithm. If thefirst solution is nearly always correct, i.e., the heuristics

104

are usually successful, little speedup will be observed, as most processors do unnecessary
work.

6.2 Hl TEC: A Serial Test Generator

HI TECisasequentia test generation that exhibits performance and quality among the
best known in the field [52]. Following the premises of the ProperCAD project [1], it was
chosen as the basis for development of an efficient and effective parallel test generator. In
this section, we review briefly techniques embodied within HI TEC. Through careful exam-
ination of HI TEC, we can determine where the application of object-oriented and parallel
mechanisms will introduce inefficiencies, overheads, or constraints that would render the
algorithm ineffective.

Although search isin some respects aregular problem, search asit is manifested in test
generation showslittle of thisregularity. The most successful combinational and sequential
ATPG algorithms are based on the PODEM agorithm [107], itself a descendant of the D
algorithm [108]. PODEM differs from the D algorithm in the set of potential assumptions
that the algorithm will consider. Whereas the D algorithm will assume values on interna
nodes, PODEM will assume values only on primary inputs, which reduces the number of
backtracks the algorithm may have to execute and accel erates the overall process.

The extension of PODEM to sequential circuits is straightforward. The sequential cir-
cuit ismodeled as an infinite iterative array of identical copies of the combination portion
of the circuit. The latch outputs of each time frame form the latch inputs of the next time
frame. The sequential PODEM algorithm startsby considering the‘timeQ’ frame; aDisas-
sumed at the specified fault and a procedure essentially the same as the combinational case
isrun. In the sequential case, if a D or D is propagated to alatch input, another time frame
iscreated, a D isinserted at the fault site in that frame, and fault propagation is continued.
Similarly, if ajustification goa reaches alatch output, an earlier time frame is created and
justification is continued in that frame.

Hl TECis a descendent of and an extension to the PODEM approach. The extensions,
roughly in decreasing order of significance, are:

6.2.1 Targeted D-frontier

Sincethecalculation of all implicationsof an assignment isNP-complete[109], test gen-
eration algorithms compute only a subset of al implications. One way of maximizing the

105

size of this subset isto maintain a‘ D-frontier’, the set of nodes closest to the primary out-
puts that have a D or D value. For each element of the frontier set, the set of dominators
isfound; that is, the set of single assignments required to justify the frontier element. The
dominator sets for each element are then intersected; the result of theintersectionis a set of
implicationsthat is necessary to justify every possible propagation path to aprimary output.

HI TEC does not perform the intersection operation. Instead, the frontier element most
likely to propagate to a primary output is identified, and a D or D value is assumed on
that node. The number of implications that can be derived from this assumption is much
greater than the implications resulting from the intersection of every possible propagation
path. However, sinceavalueisbeing assumed, thisoperation isabacktrackable decision; if
further processing determines that the assignment cannot be propagated or justified, it must
be backtracked and another element of the frontier chosen. If al elements of the frontier
are exhausted without generating atest, a prior assignment must be backtracked or, if none
exigt, the fault is declared untestabl e because the fault effect is not observable.

6.2.2 State Justification

HI TEC breaks into separate processes intraframe and interframe justifications. The de-
termination of aset of implicationsnecessary to justify avalue always halts at frame bound-
aries, i.e., the primary inputs and the latch outputs, until all justification objectives for the
current frame are met. At this point, if there are justification objectives on latch outputs,
state justification is performed. HI TEC attempts to speed state justification by:

e keepingalist of states, for each fault, which have been proven unjustifiable. Statejus-
tification failsimmediately if the new state objective is covered in the Boolean sense
by any previoudly failed state. Thismethod also preventsinfinite extension when jus-
tification of astate requiresjustification of the same statein an earlier timeframe, i.e.,
thereisacyclein the state-transition graph.

¢ reducing the state assignment. Because it is generated heuristically, the state assign-
ment may be more constrained than is necessary; changing a non-X assignment to
an X may still propagate the fault. By reducing the number of constraints, the state
justification process is made easier.

¢ taking advantage of the the state of the latches produced as aresult of simulating pre-
vious test vectors.

Figure 6.1 H TEC/ PROCFS organization

107

nature of the communication precludes paralelism. The origina application is written in
Ct* using an object-based design style. In particular, the object-oriented concept of encap-
sulation is only weakly represented and the use of dynamic-binding is omitted. Table 6.1
provides a brief description of the major classesin HI TEC. Discussion of the operation of
the fault smulator, PROOFS, is deferred to Chapter 7.

6.3 Approaches to Parallel Test Generation

A number of approaches have been proposed for parallelizing test pattern generation.
We review the models and previous implementations.

6.3.1 Fault parallelism

Fault parallelism is the process of targeting a number of the many faultsin adesignin-
dependently. In this method, the fault set is divided—usually equally—among available
processors, each processor generating testsfor itsfault set independently. Implementations
based on this method have been proposed by Chandra and Patel [110], Patil and Baner-
jee [111], [112], Patil, Banerjee and Patel [113], and Agrawal et al. [114]. The main ad-
vantage of fault parallelism islow communication overhead; it is possibleto achieve linear
speedups when the number of processors is small compared to the number of faults. The
main disadvantage is that the time required to generate a test for faults that are difficult to
detect in the seria algorithm, i.e., faultsthat require alarge number of backtracksin the se-
rial algorithm, is not reduced in the parallel implementation. Additionally, since most test
generation systems now use fault simulation to capitalize on the serendipitous detection of
multiple faults by the patterns generated for a single fault, when fault parallelism is used,

Table 6.1 Classes in H TEC

| Class | Description |
Crcuit circuit connectivity, observability, and controllability
W ndow time window representing circuit state for all active time frames
(bj ecti ves List of justification objectives
Frontier list of D-frontier nodes
Vect or St at es | database of test vectors and resulting state from PROOFS
Faul t Fault status database

108

speedups can fall due to one processor expending useless effort to detect afault which will
be serendipitously detected by the vectors generated for another.

6.3.2 Decision parallelism

Decision parallelism refersto the evaluation of the functions associated with several de-
cision aternativesin paralel. In this respect, techniques to parallelize ATPG borrow from
the parallelization of pure depth-first search [115], [116], [117], [118]. This technique was
proposed for test generation in [119], but the search space allocation strategy did not utilize
heuristics to increase the probability of searching in a solution area. A parallel branch and
bound algorithm was proposed by Patil and Banerjee[120], [121] that isbased on searching
different portions of the search space concurrently. A similar parallel algorithm for combi-
national test generation, suitable for execution on a network of workstations, was proposed
by Arvindam et al. [122]. Recently, aparallel agorithm for ATPG on sequential circuitshas
been proposed by Patil, Banerjee, and Patel [113]. The parallel algorithm, suitable for ex-
ecution on shared memory multiprocessors, uses a variation of decision parallel functional
decomposition. Ramkumar and Banerjee [123] used Charm [69] to create aparalel version
of [113] which used both fault parallelism and decision parallelism. The work presented
here adopts many of the techniques of their work.

6.3.3 Functional parallelism

Aswith any program, the test generation process can be partitioned into subtasks based
on functional blocks, e.g., thetest generator, the fault simulator, the databases, etc. Each of
thesetaskscan beperformedinparallel, limited only by datadependenciesamong them[124].
Motohara et al. [119] present a functional decomposition for test generation of combina-
tional circuits. Patil has proposed afunctional decomposition of test generation for sequen-
tial circuits suitable for shared memory multiprocessors [125]. The difficulty of handling
data dependencies makesimplementationsof functional parallelism approaches particularly
difficult.

6.3.4 Heuristic parallelism

All test generation algorithms use heuristics to guide the search process. Experiments
reported in [126], [127] suggest that there is no clear advantage to using one heuristic over
another. Parallelism can therefore be exploited by assigning to each processor a different

109

heuristic to guide the search for the same fault. This method is referred to as heuristic par-
allelism. Chandra and Patel [110] report results on a parallel algorithm for test generation
of combinational circuits through the use of heuristic decomposition. The primary limita-
tion of thismethod isthat the parallelismislimited by the number of heuristicsavailablefor
search, which is generally no more than five or six. Furthermore, when different heuristics
are used, there is no guarantee that search spaces are digoint, which may lead to redun-
dant search. Finally, no improvement is possibleif afault remains undetectable for all the
heuristics.

6.3.5 Partition parallelism

Another approach to parallél test generation is based on circuit decomposition or parti-
tion parallelism. Inthe other parallel approaches, each processor has acopy of the complete
circuit; for large circuits, the memory of each processor may not be capable of storing the
entirecircuit. In apartition parallel approach, each processor keeps a partition of the circuit
and performs backtracing operations on its own subcircuit to satisfy the various test gener-
ation objectives[128]. It has proven to be extremely difficult to achieve effective speedups
using this approach due to the high level of communication.

6.4 Parallel Test Generation using Actor Parallelism

Asnoted previously, any changesto an established and proven ATPG al gorithm aremore
likely to have an adverse effect on performance than they are to have a beneficia effect.
Since parallelization potentially changes the operation order of the algorithm, every change
must be considered carefully. Inthissection, we consider the changesrequired to parallelize
HI TEC. We defer less significant, more mechanica changes and actual implementation de-
tails to Section 6.5. Our approach to parallelization is an extension of methods devel oped
in earlier work in parallel ATPG [112], [121], [123], [125]. Paralelism is generated in two
ways, through fault parallelism and decision paralelism (Figure 6.2).

6.4.1 Fault parallelism

Fault parallel execution issimply the process of partitioning the set of undetected faults
among the available processors and then running the test generation a gorithm for each par-
titionin parallel. Implementation of fault parallelismisrelatively easy since test generation
for different faultsislargely independent. Interms of HI TEC, fault parallelismis achieved

Figure 6.2 Parallelism in Pr oper H TEC

simply by creating the W ndowobjectsin parallel rather than serialy. Thereisminimal im-
pact on execution of HI TEC when faults are tested in parallel. Since the only information
required to create a W ndow object is the target fault, creation of W ndow objects for all
faultsin parallel has a negligible impact on performance. Although results of the paralel
implementation will vary dueto differencesin the order of execution, very little of the core
of the algorithm is affected.

The only heuristicsimpacted by fault parallel execution are the state knowledge heuris-
tics. In seria HI TEC, aW ndow object can capitalize on the fact that the the state of the
circuit resulting from the execution of previous test vectorsis known. Moreover, the state
of the circuit resulting from each previous vector is recorded in the Vect or St at es ob-
ject. Inparalel HI TEC, the state of the circuit dueto the previoustest vectorsisnot known,
because it is dependent on the order of evaluation of the individual test generation objects.
Similarly, although the states produced by previous test vectors are till available, in fault
paralel execution, theinformation available at any given timewill not beidentical to that of
the seria agorithm. While the issue of nondeterminismis not of particular concern, thein-
ability to model the previouslatch state could be causefor concern if the impact were great.
The efficacy of this approach as reported in [52] is unclear, and this feature is not enabled
by default inthe origina HI TECimplementation. We did not try to support thisfeature and
did not attempt to measure the impact.

111
6.4.2 Decision parallelism

In decision parallel execution, when a backtrackable decision is made, rather than per-
forming adepth-first search of the alternatives, new W ndow objects are created in paralel
to explore the aternatives. In PODEM, the only decisions are input assignments, thus the
object graphfor each faultisabinary tree. InHI TEC, backtrackable decisionsare also made
on the targeted D-frontier; therefore, each node in the search treeis either an input assign-
ment with two out-edges representing the alternate assignments or a D assignment with N
out-edges, where N isthe total number of nodes in the D-frontier when one was targeted.

The use of decision parallelism was deemed necessary to achieve high efficiency on
many processors while quality of resultsismaintained. Quality is higher for decision paral-
lel execution because the evaluation of test objectives more closely matches the serial ver-
sion when decision and fault parallelism are combined than when fault parallelism aoneis
used. Instrictly fault parallel execution, all but one processor areworking on afault different
from the serial algorithm; if additional faults are covered by patterns generated by a previ-
ous fault, all work done in generating tests for those faults is wasted. Moreover, since test
generators generally spend most of their time generating tests for a relatively small num-
ber of hard faults, even with fault parallelism, execution time is bounded on the low end
by the time required to test the most difficult fault. Decision parallelism explores differ-
ent areas of the search space in parallel; therefore for cases in which alarge portion of the
search space must be explored, significant speedup can beachieved. Notethat by casting the
ATPG search in such a general framework, it is easy to enable purely fault parallel, purely
assignment parallel (i.e., PODEM/Pr oper TEST), or assignment and D-frontier parallel
execution (HI TEC).

Only one significant change to HI TEC heuristics was required to implement decision
paralelism. The change stems from the inability to pass information up the search tree in
paralel search. When a backtrack occurs in depth-first search, information gained in de-
tecting the backtrack can be passed up the search tree to influence the backtracking process
itself. HI TEC utilizes this information when a state-justification failure occurs, when this
type of condition occurs, abackt r ack- nmust - change- st at e flag is set, which indi-
catesthat any decision aternativesthat do not change the state-j ustification target should be
backtracked immediately. When a decision alternative resultsin a different state for justifi-
cation, normal operation resumes.

When decision parallelism is used, a breadth-first-like search is employed. Since deci-
sion aternatives no longer execute strictly in sequence, there is no way to passthe back-

112

t rack- nust - change- st at e flagamongthem. Fortunately, thisinformationisclosely
related to the complete set of unjustifiable states, already maintained by the fault database.
For those cases in which the backt r ack- must - change- st at e flag is set, the back-
tracked state must bein alist of failed states. Checking thefailed stateslist isactually more
accurate, because a backtrack that does change the state may simply change it to another
failed state, a condition which the original HI TEC algorithm does not detect. Since the
amount of processing required to check the failed states list is greater than that required to
simply test aflag, the choice of which technique to use is dependent on the relative amount
of timerequired to check thelist versusthat required to perform the usel ess work of explor-
ing nonsolution aternatives. Testing of HI TEC using both heuristics showed the cost of
useless searching to be far greater than the cost of checking the failed states list; therefore,
HI TECand Pr oper Hl TEC have been modified to use the effective heuristic.
Implementation of decision parallelisminvolvesoverloading thedecisionroutinesst or e _

pi () andstore Dfrontier() tocreate new W ndow objects. In essence, the pro-
cess consists of cloning the current W ndow object, with the exception of the assignment
to be made. Since the W ndow object contains the state of all nodes in the circuit for al
active time frames, the cost of this operation can be significant. Also, since the number of
new W ndowobjects produced rises exponentially in the number of decisions performedin
paralel, beyond arelatively low limit the benefit of decision parallel execution disappears.
When decision parallelism is used, a limit on the depth of decisions performed in parallel
is set; after afixed number of decisionsis executed in parallel, operation resumes using the
HI TEC depth-first algorithm.

6.5 ProperH TEC

Pr oper H TEC, based on the origina HI TEC code and the ProperCAD II library, im-
plements the parallelism features described in Section 6.4. To implement parallel search,
multiple search processes—W ndowobjects—are created, either from the fault to be tested
(fault parald) or from the fault, the current state of the heuristics, and the set of previously
assigned inputs (decision parallel). Furthermore, we haveto distribute the data contained in
the other objects, e.g., thefault database, the vector/states database, and the fault ssmulator.
Figure 6.3 shows the Pr oper Hl TEC objects that have paralel semantics, along with the
HI TEC and AlF objects from which they are derived.

Figure 6.3 Pr oper HI TEC organization
6.5.1 Test Generat or

The Test Gener at or object is an actor that represents a ‘test generator machine.’
Test Gener at or instances can be created for a specified fault to implement fault par-
alelism, or they can be cloned from an existing instance and an aternate assignment to
implement decision parallelism. Decision parallelism is bounded by a user-specified limit,
beyond which decisions are made in a depth-first manner using the serial code.

Pr oper H TEC uses lexicographically ordered bit-string priorities to guide the execu-
tion of Pr oper Hl TECas closely as possibleto the order used in the sequential agorithm.
When bit-string priorities are used, the next test generator object to be evaluated, chosen
from a group of tasks, is always the one which would have been evauated first by the se-
guentia algorithm. On asingle processor, test objectives are evaluated in the same order as
they arein Hl TEC,; the only case for which H TEC and Pr oper Hl TEC on one processor
generate different results occurswhen per-fault timelimitsare used, in which case small dif-
ferencesin run times can cause afault to be aborted in one application, where it is detected
in the other.

The use of bit-string prioritiesin Pr oper Hl TEC is an extension of the method pro-
posed in [123]. The priorities are extended to support the nonbinary nature of the search
treein HI TEC. We note that in the AIF, the use of bit-string priorities for the test generator
objects has no effect on the priority representations used by the other objectsin Pr oper -
HI TECor inthelibrary in general.

6.5.2 CircuitAggregate

Thecircuit isimplemented as an aggregate with aPer Thr ead distribution. Data shar-
ing viaa Per Pr ocessG oup distribution was implemented but was later removed be-

114

cause the Hl TEC agorithm uses fault injection through circuit modification; a method of
parallel faultinjection algorithm that would allow thecircuit datato be shared resulted in ex-
cessive overhead in the core HI TEC agorithm. Switching the distribution of the aggregate
isaone-line change.

6.5.3 Faul t Dat aBase

The fault database is implemented as an aggregate with a Per Thr ead distribution.
Each representative stores the most recent state of the test generation process for each fault
and provides the same interface to the test generator objects as does the serial Faul t ob-
ject. When an updateisreceived fromaTest Gener at or object or from the vector/states
database, the Faul t Dat aBase representative records the information localy, and if this
resultsin a change of the local state, it broadcasts that information to all other representa-
tives. The broadcast operation isimplemented via operations on first class names.

6.5.4 \Vectors

The Vect or s object is essentially the same as the seria object but uses Act or Me-
t hods to record new vectors and to send results to the Faul t Dat aBase. Fault smula-
tion is performed using the Faul t Si nul at or object used in HI TEC, invoked by actor
methods provided by theVect or s actor. Test generators have been observed to spendlittle
timein fault simulation; therefore, parallelization of the fault simulator used for test gener-
ation was not investigated. Parallel fault simulation as an independent task is covered in
Chapter 7.

6.5.5 Userlnterface

TheUser | nt er f ace object isused to interact with the user during the running of the
test application. It createsthe system objects and then createstest generator objectsfor each
undetected fault in the circuit. If the progressive time limit feature of Hl TEC is used, the
process of creating test generator objectsis iterated with progressively larger time limits.

115
6.6 Performance

6.6.1 Performance results

Tables 6.2, 6.3, and 6.4 show the results of Pr oper Hl TEC for a number of circuits
drawn from the ISCAS-89 benchmark set [104]. All times, T, are reported in seconds and
represent the elapsed wall clock time.! Fault efficiency, E, computed as

(#faults — #aborted)

efficiency = i

ispresented. V isthe number of test vectors generated.

For each circuit, theresults of the sequential Hl TEC algorithm and the Pr oper HI TEC
algorithms on various machine configurations are reported. The Hl TEC numbers presented
are for the version of HI TEC that shares code with Pr oper HI TEC. Although the current
version of HI TEC takes greater advantage of dynamic memory allocation, the amount of
time spent doing memory management has been carefully analyzed and has been determined
to be less than afraction of a percent.

Pr oper H TECachievesconsistent speedup withonly amarginal effect on quality across
arange of moderately difficult test problems. Pr oper H TEC achieves consistent speedup
with only marginal effect on quality across a range of moderately difficult test problems.
The mgjor effect on quality is the addition of a small amount of noise in the results; while
Pr oper H TEC does not always achieve results identical to HI TEC, the number of cases
for whichit produces higher quality results are comparable to the number of casesfor which
it produces lower quality results.

The only time excluded from reported times are for initialization and final writing of results, which are
required because some of the parallel machinesimplement 1/0O poorly.

Table 6.2 Pr oper H TECresults on Sun 4/670MP

Circuit/ H TEC Pr oper H TEC
Seconds Processors
Per 1 2 3 4

Fault T E V T E V T E V T E V T E V
S344/20 |369.4195.9| 121 |374.3|95.9| 121 {251.9/96.2| 110 {160.0|96.5| 130 |156.2|96.2 | 112
$820/20 |435.9(99.3| 956 |396.8|99.3| 956 |225.4|99.3|1010|196.3(99.1|1059|140.3(99.1 {1013
$953/20 |125.8/ 100 | 20 |134.2{100| 20 |71.37|100| 12 |64.17|100| 16 |47.24|100 | 12
s1238/2 {13.13| 100 | 386 21.64| 100 | 386 |15.15| 100 | 390 |13.31| 100 | 405 |16.18| 100 | 385
51494/20|722.0(99.1| 1058 | 663.4 | 98.9| 1058 |434.1 {98.9 | 1123 | 350.5 |98.9 | 1153 | 240.1|99.1 | 1093

116

Table 6.3 Pr oper H TECresults on Intel iPSC/860

Circuit/ H TEC Pr oper H TEC
Seconds Processors
Per 1 2 4 8

Fault T E V T E V T E V T E V T E V
S344/20 |481.4|94.2| 89 (485.8|94.2| 89 [215.8|96.8| 105 |194.5|96.8| 112 |142.1|96.5| 102
s820/20 438.3|99.3| 959 |440.8|99.3| 959 (270.4|99.2| 958 |158.0|99.3| 951 |108.0|98.9|1034
$953/20 | 140.2| 100 | 14 |147.7|100| 14 |89.13|100| 14 |49.00|100| 24 |28.66|100 | 14
s1238/1 |14.15| 100 | 374 {23.29| 100 | 374 |14.69| 100 | 383 |12.16| 100 | 369 |11.12| 100 | 402
51494/20| 819.8|99.0|1079|821.3|98.7|1079|503.3|99.1 | 1168 | 310.1|98.6 1113 | 192.2|98.8 | 1151

Table 6.4 Pr oper H TECresults on Encore Multimax

Circuit/ H TEC Pr oper H TEC
Seconds Processors
Per 1 2 4 8

Fault T E V T E V T E V T E V T E V
S344/20 |484.2|193.9|105|493.2193.9|105|274.3|95.6| 95 |167.0|95.6| 85 [131.2|94.7 |108
s820/20 | 1200 {97.8|891| 1206 | 98.1|891|761.8 |97.6|1008 | 418.9 |97.2 | 959 | 255.6 | 96.9 | 955
$953/100|572.4| 100 | 20 {597.1| 100 | 20 |343.3| 100 | 18 |252.1| 100 | 14 |166.7|100 | 10
s1238/10|65.41| 100 | 386 |97.49| 100 | 386 |60.53| 100 | 382 |53.83| 100 |382|55.35 | 100 | 406
s1494/10| 2615 | 87.0|492 | 2920 (84.2|402| 1654 |85.5| 460 |997.0|83.9|497|540.2 |85.5|510

Casesfor which the parallel algorithm does not achieve acceptable results are the * easy’
benchmarks, those for which 100% efficiency is achieved by the serial algorithm within a
few seconds. Since these are easy problems which finish quickly, optimization for these
casesisnot of great interest.

6.6.2 Workstation cluster results

Table 6.5 showstheresults of Pr oper Hl TEC on aworkstation cluster of Sun SPARC-
station 10s and Sun 4/600MPs. The columns labeled 2 and 4 processors were run on the
indicated number of individual workstations. The column labeled 2/2 was run on an IP-
connected pair of Sun 4/600 multiprocessors. Each machine had four processors, but only
two were used in each case. The results for the workstation cluster port show much greater
variation than do the previousresults. Thisvariation isafunction of the performance of the
APA UDP implementation (Section 4.5). If the cases in which the network protocol failed
are excluded, the results show speedups comparable to those on multiprocessors and mul-

117

Table 6.5 Pr oper H TECresults on clusters

Circuit| H TEC Pr oper H TEC

Processors
1 2 4 2/2
T E T E|T E|T E|T E
s526 |6083|12.11.01{12.1(2.0|12.3|1.0|12.1|3.1|12.3
s820 | 468 |99.5/0.95{99.5(2.0/99.5|0.4|99.3|1.6|99.5
s5378 | 2982|71.1|1.03|71.1|0.5|70.3(2.4169.4|3.0|72.5

ticomputers. It appears that the use of clusters of multiprocessors helps to mitigate some of
the UDP artifacts.

6.6.3 Efficiency results

In addition to providing faster turnaround, parallel processing can be used to achieve
higher fault efficiency in afixed amount of time. Table 6.6 shows the results of running test
generation on s1494 where the per-fault time limit was scaled with number of processors.

Consistentimprovement isobservedfor al platforms. Of noteisthefact that even though
the time limit was raised in tandem with the number of processors, run times still decrease
on paralel runs. Thisresult is due to the fact that once a fault is detected, raising the per-
fault time limit does not increase run time.

Table 6.6 Increased efficiency in Proper H TEC

Machine | Seconds # T E
Per of
Fault Processors
Sun MP 1 1 707.0 822
2 2 230.7 97.1
3 3 2220 97.6
4 4 1854 98.1
iPSC/860 2 1 7774 795
3 2 3350 944
8 4 2127 97.8
20 8 192.2 988
Multimax 2 1 2069 420
4 2 1465 67.1
8 4 1047 77.4
20 8 540.2 855

118
6.6.4 Comparison to Proper TEST

Table 6.7 compares the results of Pr oper Hl TEC with those of Pr oper TEST [123],
an earlier work in paralel ATPG, based on similar parallelism concepts. The table shows
the results of the two applications run on an iPSC/860 with eight processors. In general,
where Pr oper TEST achieves high fault efficiencies, the results are faster but compara-
ble to Proper Hl TEC. In cases where Pr oper TEST does not achieve high efficiency,
Pr oper H TECdoes and in afraction of the time.

6.7 Evaluation

One of the most interesting aspects of the development of Pr oper HI TECwasthe use
of derivation to extend the serial application to a parallel application. In previous work us-
ing Charm [123], similar algorithmic techniques were used, but they required incompatible
changes to the original serial code. In the case of Pr oper HI TEC, the only fundamental
change was the modification of several functionsin the serial code to use dynamic binding
in order that those functions could be overridden in the derived actor and aggregate classes.
Because changing static dispatch to dynamic dispatch involvesthe addition of alevel of in-
direction, the performance impact was considered carefully. The affected functions are not
called within the most computationally intensive part of the test generation process and no
performance degradation was observed.

Aggregates were key to expressing data distribution in asimple way and to keeping sta-
tus information representing the progress of the test generation process up to date. Hetero-
geneous prioritieswere used both to order the eval uation of test generator objectsand to en-
sure that continuations called on the aggregates took priority; delaysin distributing updates

Table 6.7 Comparison of Pr oper H TEC and Pr oper TEST on iPSC/860

Circuit/ | Proper H TEC | Proper TEST
Seconds
Per
Fault T E T E
S344/20 | 1421 96.5 975 950
S349/20 | 1281 94.6 1099 954
s$820/20 | 108.0 98.9 10815 60.4
s832/20 | 1180 98.7 10538 61.1
s1494/10 | 192.2 98.8 756.6 734

119

to the fault database, for example, result in wasted work, as Test Gener at or objectstry
to generate tests for faults that have already been tested.

It isdifficult to quantify the effort required to create Pr oper H TECfrom HI TEC. The
design and implementation of Pr oper HI TECwere performed in parallel withthedevelop-
ments of the AIF and APA, which makes determination of the duration of the development
period impossible. Moreover, a significant amount of work was required to regularize the
origina seria HI TEC/PROOFS code; these applications represent the first use of Ct+ by
the original designer. When the time necessary to clean up the original code is excluded, it
isestimated that the preliminary parallelization effort took approximately two man-months,
and improvements and the most significant debugging required an additional man-month.

Quantification of changesto the original application isequally difficult, in this case not
because statistics are difficult to generate, but because simple measurements—such as the
raw number of lines of code—contain limited information without additional contextual in-
formation such as coding style. We report several metrics of the Hl TEC and Pr oper HI -
TEC implementations in Table 6.8; interpretation should be done with care. In addition to
reporting the raw number of lines of code, we report the number of lines containing a semi-
colon; this measure shows less variation across coding styles. Also reported is the number
of classesinthedifferent versions; virtually all the significant classes are shared between the
paralel and seria versions. The exceptions are the five actor and aggregate classes shown
inFigure6.3andtheTest Pri ori t y classused to specify an order on parallel evaluation
of test generation tasks.

Whilethe valuesfor lines of code indicate a significant amount of new code, the bulk of
the additional code is declarative, which provides new control flow, viaAct or Met hods,
and aggregation of data, i.e., the structures used to represent the single argument to an actor

Table 6.8 Comparison of soffware metrics for H TEC and Pr oper H TEC

Metric H TEC | Pr oper Hl TEC | Shared

Lines of code 336 6287 10685

Lines of codewith*;’ 110 1165 3056

Classes 0 6 17
excluding Act or Met hod and argument classes

Act or Met hod classes 0 27 0

Act or Met hod argument classes 0 13 0

120

method. The number of classes used to represent these two sets of operation are shown in
the last two lines of Table 6.8.

A breakdown of the number of actor methodsby classisshownin Table6.9. Themajor-
ity of Act or Met hods arefoundintheFaul t Dat aBase andUser | nt er f ace classes.
Inthe Faul t Dat aBase class, the methods are used to communicate all ocation and status
information on the current state and usage of resourcesfor eachfault. IntheUser | nt er f ace,
themgjority of actor methods are used to sequence the creation and destruction of aggregate
instances.

Table 6.10 presents the numbers of member functions in the concurrent types and the
seria typesfrom which they are derived. These data represent ameasure of the paraleliza-
tion effort and show that most functionality in Pr oper HI TEC s inherited from HI TEC.
Most of thefunctionsin Pr oper Hl TECare small; they perform most of their computation
through calls to members of the serial base class.

In addition to the creation of the concurrent object types, to implement paralelism a
number of previously statically bound members of serial Hl TEC classes had to be modified
to use dynamic binding; the original serial code contained no use of dynamic binding. The
number of virtual membersis reported in Table 6.11 along with the total number of mem-

Table 6.9 Act or Met hods for each class in Pr oper H TEC

Number of
Proper H TECclass | Act or Met hods
Test Gener at or 3

G rcui t Aggregate 4
Faul t Dat aBase 8
Vectors 4
Userlnterface 8

Table 6.10 Member functions in H TEC and Pr oper Hl TEC

Number of Number of
Hl TECclass member functions | Pr oper Hl TECclass | member functions
W ndow 78 Test Gener at or 8
Circuit 47 Circui t Aggregate 6
Faul t 35 Faul t Dat aBase 21
Vect or sSt at es 12 Vectors 5

121

bers. Most classes required few if any new virtual members, the exception being the fault
database which contains a number of small status update functions that are overloaded in
the parallel application to propagate updated status information to al processors.

Table 6.11 New virtual members in H TEC

Number of
Number of new virtua
H TEC class member functions | member functions
W ndow 78 4
Crcuit 47 0
Faul t 35 13
Vect or sSt at es 12 0

122

Chapter 7
PARALLEL FAULT SIMULATION

Fault simulationisused to determinethefraction of faultsinacircuit that are covered by
agiven set of tests. Aswasshownin Chapter 6, fault simulationisused during automatic test
pattern generation to identify those faults detected serendipitously to minimize the number
of faults to be targeted by the test generator. Fault smulation is also used to evaluate the
efficacy of sets of test vectors. These vectors may be functional vectors generated during
the design of acircuit or may be generated randomly prior to test generation to minimize
the number of faults to be processed by a deterministic test generator. The results of fault
simulation are lists of faults detected and undetected by the set of vectors. From theselists,
the fault coverage, the ratio of the number of detected faults to the number of total faults,
can be calculated. On large complex circuits with large test sets, fault simulation can take
from hoursto days.

In this chapter, we present Pr oper PROOFS, a parallel implementation of the PROOFS
fault ssimulation package. Pr oper PROOFS uses the aggregate model as implemented in
the AIF to decompose the fault smulation problem. In addition to the use of derivation
to incrementally parallelize an existing state-of-the-art serial fault simulation application,
Pr oper PROOFS incorporates a new asynchronous and distributed method of fault redis-
tribution to improve load balance.

After briefly reviewing the area of fault simulation, we summarize the features of the
PROOFS package for sequential ATPG. In Section 7.4, we consider modifications to the
PROCFS package necessary to support parallelism. In Section 7.5, we discuss the imple-
mentationdetailsof Pr oper PROOFS. Section 7.6 summarizesthe performanceof Pr oper -
PROCFS on anumber of circuitsin the ISCAS-89 benchmark set [104].

Figure 7.1 Fault simulation table model

Figure 7.3 Differential fault simulation

Figure 7.4 Bit-parallel fault simulation

126

selecting faults until theword length is reached or until there are no additional faults. Good
circuit simulation is performed separately; therefore al bits of the words are used. During
selection of faults, each candidate is checked to see whether it is active in the current time
frame; faults that are not active are excluded, which eliminates useless ssmulations. The
fault list is ordered to assure that there is a high probability that simulation of faults within
the same group will result in activity in the same part of the circuit, which will decrease the
number of events processed.

7.2.2 Fault injection

PROCFS uses the same fault injection scheme used in HI TEC. By injecting faults via
circuit modification, the event evaluation loop, the core of the algorithm, becomes more
regular and therefore faster.

7.2.3 Fault dropping

The combination of techniques incorporated into PROOFS allows for fault dropping as
soon as afault is detected.

7.2.4 Faulty state storage

PROCFS simulates all faults for an individual vector before processing the next vec-
tor. Before evaluating any faults, PROOFS simulates the good circuit using an event-driven
logic simulator, storing thevaluesat every nodefor reference during faulty ssmulation. Faults
are simulated in groups, again using event-driven simulation. In this case, the event-driven
simulation is relative to the values in the good circuit. At the end of each group, only the
state values for faulty circuitsthat are not detected and that are not equal to the good circuit
values are saved; the compl ete state of the circuit for each faulty circuit is discarded.

The organization of PROCFS (including the HI TEC test generator) is shown in Fig-
ure 7.5.

7.3 Approaches to Parallel Fault Simulation

A number of approaches have been proposed for the parallelization of fault simulation.
Wereview themodel sand previousimplementations, restricting the di scussion to techniques

Figure 7.5 PROCFS organization

applicableto sequentia circuits. Discussion of technigues applicable only to combinational
circuits can be found in [135].

7.3.1 Fault partitioning

Fault partitioning infault smulationissimilar in concept to fault paralelismin test gen-
eration. Thefault listisdivided—again, usually equally—among available processors, each
processor simulating all faults in its partition independently. However, more than in test
generation, load balance isacritical issue in fault simulation. Due to the wide variationin
event activity generated by different faults, static partitioning is generally not successful.
Among the parallel fault simulation implementations based on fault partitioning, a number
of differencesarefoundin partitioning and load balancing. Inaddition to losses of efficiency
dueto uneven load balance or of computation necessary to implement load balancing, parti-
tioning of the fault list givesrise to overheads due to duplicate computation of good circuit
values. The only techniques that do not incur this overhead are bit-parallel simulations for
which the good circuit values are always cal culated with every fault group.

Severa implementations based on fault partitioning have been reported. Virtualy all
are based on a master-slave model in which a single processor is dedicated to maintaining
the list of undetected faults. Slaves request fault groups from the master, perform simula-
tion, and return results. Duba et al. [136] report this type of scheme based on the CHIEFS
concurrent hierarchical serial fault simulator [137]. Theimplementationistargeted at work-
station clusters and uses remote procedure calls (RPCs) [20] for communication. Speedups

128

from five to six were reported on eight processors. Markas et al. [138] report a distributed
fault simulation agorithm on a heterogeneous workstation cluster; speedups ranged from
two to six on eight workstations for a small number of examples.

7.3.2 Circuit partitioning

Themain alternativeto fault partitioningiscircuit partitioning, in which thegood circuit
being simulated is partitioned among available processors. Circuit-partitioned fault simu-
lation is effectively a variant of parallel logic simulation, itself a difficult problem [139].
In fault simulation, the problems of logic simulation are compounded by the link between
circuit partitioning and fault list partitioning; the number of faults a processor simulatesis
fixed by the partitioning. Short of redistributing the circuit, there is no way to redistribute
faultsif all faultsin a partition are dropped.

Fault simulation based on circuit partitioning has been reported by Mueller-Thuns et
a. [140] and Nelson [141] for a vector-synchronous implementations on message passing
machines. Ghosh [142] presents an asynchronous implementation based on asynchronous
logic simulation techniques that, while novel, falls short of achieving high processor effi-
ciency. In[143], Patil et a. present acircuit-partitioned approach applicabl e to shared mem-
ory machines machinesthat incorporate techniquesfrom parallel logic simulation[139], [144].

7.3.3 Pattern partitioning

For combinational circuits, fault simulation can be trivially parallelized by partitioning
thetest vector set. Theonly significant issueisload balance, similar to the fault partitioning
case. For sequentia circuits, the problem is much more difficult, because simulation of any
vector inasequential circuit requiresthe stateresulting from all previousvectors. Kung and
Lin [145] present anovel technique for applying pattern partitioning to sequential circuits.
In their algorithm, the good circuit is simulated for all vectors, but faulty circuits are sim-
ulated for only a subset of the vectors. Because the faulty state is not available for unsim-
ulated vectors, faulty simulations may be inaccurate. In those cases, the error is detected
and multiple simulation passes are performed. The advantage of this method is that it is
based on afault simulation technique that demonstrates good performance but is otherwise
inapplicable to sequentia circuits. Banerjee [135] has proposed a parallel fault ssmulation
algorithm for sequentia circuits based on pattern parallelism; no implementation has yet
been reported.

129
7.4 Parallel Fault Simulation Using Actor Parallelism

In addition to casting fault simulation into an actor framework, a primary goa of this
work was the elimination of single points of contention, e.g., the actor or processor that
does load balancing in master-slave methodol ogies.

7.4.1 Fault partitioning

The approach adopted in thiswork is the fault partitioning method covered in Subsec-
tion 7.3.1. A single aggregate, Faul t Si mul at or Aggr egat e, is created to represent
the fault ssmulator; faults are partitioned among representatives. In a fault simulation ap-
plication, the aggregateisgiven aPer Thr ead distribution. Each representativeis respon-
siblefor fault simulating its set of faultsfor all vectorsin the test set.

Fault partitioning in the aggregate model is similar to the techniques reviewed in Sub-
section 7.3.1 with a significant difference: a master-slave model for load balancing is not
used. Instead, two methods were investigated.

7.4.1.1 Static partitioning

Static partitioning was implemented, the results for which are shown in Table 7.1 for
circuits from the ISCAS-89 benchmark set. For each circuit, the results of the seria appli-
cation, PROCFS, is shown for fault simulation of 1000 random vectors. The results for the
paralel application, Pr oper PROOFS, without dynamic redistribution are shown for asin-
gle processor and several multiprocessor configurations. The resultsin the table show that
static redistribution led to less than optimal speedup, and as aresult dynamic redistribution
was considered.

7.4.1.2 Dynamic partitioning

The motivation for the aggregate model was the use of a multiaccess interface; to add
abottleneck in the form of a master representative is alimitation to scalability. Instead, an
asynchronous, distributed method of fault redistribution was devel oped to achieve effective
load bal ance without limiting scalability. In the remainder of this subsection, we look at the
asynchronous redistribution of faults and address the issue of termination detection when
the fault redistribution process is distributed.

130

Table 7.1 Run tfime and speedup for static fault distribution on the iPSC/860

Circuit | PROOFS Pr oper PROOFS
(sec) Processors
(speedup)
1 2 4 8
s208 9.1 0.99 | 1.51 | 260 | 4.48
s2080 3.6 095|140 | 179 | 1.98
s298 45 094|121 | 160 | 1.62
s344 44 0.89|1.01| 105|110
s349 45 0.89|1.01 | 1.04 | 1.09
s382 10.9 094|129 | 192|238
s386 3.0 0.93|1.38|1.68 | 219
400 12.2 095136191245
420 235 0.97 | 1.49 | 256 | 4.43
A44 14.5 096 | 1.34 | 202 | 2.84
s510 37.8 0.96 | 1.62 | 255 | 4.41
s526 174 096 | 1.45 | 1.87 | 2.52
s526n 16.8 096|141 188|254
s641 59 096 | 1.12 | 1.50 | 1.57
s713 6.7 097|119 | 158 | 174
s820 115 096 | 1.20 | 1.54 | 1.83
s832 11.7 095|122 | 155|188
s838 63.2 1.01 | 1.50 | 2.55 | 4.37
s953 1019 | 103|141 | 266 | 3.96
s1196 9.9 099|141 |190 | 228
s1238 114 0.99 | 1.50 | 2.00 | 2.51
s1423 46.1 098|164 | 270|414
s1488 215 098 | 1.26 | 1.50 | 1.65
s1494 21.8 096 | 1.27 | 1.52 | 1.67
s5378 150.3 | 099 | 134|219 | 3.74
s9234 4588 | 1.00| 160|248 | 2.90
s13207 | 1598 | 099|138 193|324
s15850 | 966.8 | 0.98 | 1.75 | 2.96 | 4.88
s35932 1124 101 | 139|190 | 243
s38417 | 5112 | 0.97|1.84 | 3.60 | 6.49

1000 random vectors

Figure 7.6 Split request in fault redistribution

132
7.4.2.2 Splitting fault lists

Upon receiving arequest to split afault list, an actor performs a number of tests. First,
it determines whether it has any faults remaining to be simulated. If it does not, the actor
simply forwards the request to another representative at random, this time excluding both
the origina requester and itself (Figure 7.7). If the actor has remaining vectors to send, it
dividesitsfault list and returns half to the requesting representative.

7.4.2.3 Rescheduling

Because the actor model does not support preemption, in order to support fault redistri-
butionitisnecessary to have representatives reschedul e themselves, i.e., send continuations
to themselves to continue the current computation. This rescheduling occurs instead of se-
rially processing all vectors. Without rescheduling, an actor that has faults that may be split
will never receive arequest to split its fault list until it aready has no faults to share. Be-
cause rescheduling continuations are always sent to the actor itself, they never incur delays
due to network latency.

7.4.2.4 Communication characteristics

In the process of fault simulation, an actor will generally either be performing fault sim-
ulation in response to arescheduling request or it will be waiting for more vectors to simu-
late from another representative. If the actor hasfaultsto simulate, it will periodically send
itself asimulate request and return control to the run time system. Thus, for active represen-
tatives, there exists one task, always in the local task queue, representing the continuation
of the current simulation. For idle representatives, there will be a task somewhere in the
machine representing a request for more faults to process. At the beginning of the smula
tion when the first representative compl etes, this split message is generally satisfied by the
first actor to receive the request. As simulation progresses toward completion, the number
of idle processors grows and fewer split messages are satisfied by the first actor to receive
the request. While the number of messages in flight in the network grows, the number is
bounded by the number of idle processors because an idle processor sends only one request

message.

Figure 7.7 Forwarding of split requests
7.4.2.5 Termination detection

One aspect of asynchronous redistribution that causes more difficultly than the master-
dlave case is the detection of completion of al simulation. In the master-slave case, the
master knows immediately when all faults have been simulated. In the distributed case, no
representative knows the total state of the fault simulation.

There are two straightforward methods for determining when fault simulation is com-
plete. Thefirstisto centralizethe statusof thefault simulation progressin an arbitrary repre-
sentative, for example, representative zero, and to have al other representatives send a sta-
tus message to that representative every time they complete the simulation of a set of faults
for all vectors. The status representative can trivially determine when the operation is done
by summing these requests and comparing against the total number of faults in the circuit.
While this approach implies a small amount of asymmetry among representatives, it does
not suffer from the primary drawback of the master-slave approach which is synchroniza-
tion, the inability of the slave to perform any computation until aresponseisreceived from
the master. In the case of status-only data, no reply is expected in responseto sending asta
tus message to the coordinating representative; therefore normal processing can continue.
Moreover, since if the coordinating representative has any vectorsto simulateit istrivially
the casethat the simul ation has not compl eted, status messages can be given low precedence,
thereby not impeding the coordination representative's fault simulation progress.

The second alternative for termination is the use of quiescence detection on outstanding
rescheduling requests. When the number of outstanding rescheduling events reaches zero
and no representatives are performing fault ssmulation, the simulation has completed. This
technique was implemented and is considered more fully in Subsection 7.7.3.

Figure 7.8 Pr oper PROCOFS organization

Table 7.2 Time (ms) of fault simulation operations

Circuit Per Fault Group Per Vector

Mean | Variance | Min | Max | Mean | Variance | Min | Max

s382 | 3.739 | 0958 |0.132| 18.38 | 5.457 2711 | 3189 | 22.90
sb378 | 8489 | 8297 | 0.249 | 180.7 | 140.3 57.21 | 92.06 | 692.9
9234 | 3.855 | 3.366 | 0.969 | 39.59 | 497.6 38.65 | 457.9 | 550.0

s35932 | 9.366 | 2310 | 1.254 | 389.1 | 2071.3 | 1185 | 518.3 | 5597

135

asignificant amount of time to process, up to five seconds on large circuits, thus latency of
delivery should be considered.

Though small grain size did not appear to be a problem, per-vector rescheduling was
implemented. The mgjor reason for this was ease of implementation; the fault-group loop
isdeeper within PROOFS, which requires significant saving of state during rescheduling. In
addition, thefrequency of fault redistributionislow enough that vector loop latency doesnot
have a significant impact on run time. Prioritized execution is used to ensure that requests
to split afault list have higher precedence than the rescheduling request.

7.5.2 Splitting fault lists

Whilesplitting fault listsisconceptually straightforward, implementati on within PROOFS
ismore difficult. When faultsare split, in addition to thelist of faults, several valuesarere-
quired to restart the simulation on the remote representative:

e the next vector to be simulated.

¢ thegood circuit state. Good circuit state is not saved; therefore it must be transferred
in order for the other representative to restart simulation.

¢ the good circuit events. Information from the previous time period is stored as alist
of events until incorporated into the good circuit state.

¢ the faulty circuit states. The only information required between time steps for the
faulty machine are those values of the state elementsthat differ from the valuesin the
good circuit.

All this data must be gathered and sent to the remote node. While the amount of infor-
mation appears large, the infrequency of redistribution keeps this from having a significant
impact on execution times.

When the number of undetected faults or unsimulated vectors becomes low, the useful-
ness of splitting faults falls. To restrict communication overhead from growing, a lower
bound is placed on the number of vectors and faults that may be split; if either number falls
below the bound, splitting does not occur. Moreover, once that bound is reached, the rep-
resentative performs the rest of the simulation serially without rescheduling. Lacking this
seria processing of small sets of faults and vectors, as the number of idle processors in-
creases, so many split requests are received and forwarded that the representative has no
timeto finish itslist of faults.

136
7.5.3 Termination detection

Termination detection is implemented with quiescence, as mentioned above. For qui-
escence to occur, the split requests must be hidden from the quiescence detector through
ther epr esent sWor k() method described in Subsection 5.2.3. Once thisis done, qui-
escence is detected after the last rescheduling task is processed.

7.6 Performance

Table 7.1 shows the results for static partitioning; Tables 7.3, 7.4, and 7.5 show the re-
sultsof Pr oper PROOFSwith dynamicredistribution onan Intel iPSC/860, an Intel Paragon,
and a Sun 4/690MP, respectively. The circuits are drawn from the ISCAS-89 benchmark
set [104]. Test vectors were generated randomly.

Comparison of PROOFS and Pr oper PROOFS shows that rescheduling and other con-
currency issues contribute little overhead to the fault simulation process. Results for the
message passing machines show moderate speedup for many of the larger circuits. Limi-
tations on scal ability and the lack of speedup for some large circuits are considered in Sec-
tion 7.7.

The results for the Sun MP show that while speedup is moderate on two and three pro-
cessors, often little run timeimprovement isachieved on four processors. Sincethe message
passing architectures achieve significant performance on anumber of circuits for which the
shared memory version does not, differences must be due to the shared memory message
passing mechanism. Therearetwo possibilitiesfor thelack of speedup. Thefirstistheeffect
of the redistribution messages, which are transmitted much more quickly in shared memory
than through a network. Since these requests are continually forwarded when there are no
faultsto redistribute, they are basically passed at the maximum message passing bandwidth
of the interface. The result is an increase in contention for system resources. The second
issueisgeneral contentionin memory. This contention isdifficult to evaluate and isatopic
of future interest for the library in general. Alternate fault redistribution schemes that do
not drive the library at maximum bandwidth are also a topic of future work.

In addition to random test patterns, ATPG-generated test patterns were considered. Test
patterns generated by automatic test pattern generators generaly simulate differently than
do random test vectors, since ATPG vectors usualy result in a much higher number of de-
tections per vector than do random vectors.

Tables 7.6 through 7.8 show the resultsfor Pr oper PROOFS on deterministic test vec-
tors generated by the STG test generator [129]. The results for ATPG vectors are gener-

Table 7.3 Pr oper PROOFS results on Intel iPSC/860: random vectors

Circuit | PROOFS Pr oper PROCFS
(sec) Processors
(speedup)
1 2 4 8
s208 91.3 099 | 146 | 248 | 4.09
s2080 33.0 095 | 1.00 | 1.54 | 1.90
s298 335 093|101|126|126
s344 41.3 092|096 | 0.99 | 1.04
s349 41.9 092 | 096 | 0.99 | 1.03
s382 109.2 | 094 | 141|218 267
s386 254 093|086 | 129 | 2.07
400 121.7 | 095|147 | 218|271
420 235.7 | 097|164 |286 | 455
444 1424 | 096 | 1.52 | 241 | 3.08
s510 3776 | 096 | 177|329 |575
s526 1700 | 096 | 1.58 | 243 | 3.05
s526n 1654 | 096 | 157 | 232 | 292
s641 53.3 096 | 093|134 |145
s713 60.6 096 | 095 | 145 | 1.60
s820 1019 | 095 (117|152 |176
s832 1044 (094|119 | 152|175
s338 6420 |1.01|184|325|5.08
$953 1023 | 1.02 191|341 |5.73
s1196 50.5 097|100 |130| 134
s1238 62.0 097 | 1.05 | 1.33 | 1.47
s1423 3588 | 098|168 | 270|393
s1488 1920 | 098 |1.27 | 1.46 | 1.53
s1494 1949 | 096|128 148|154
sb378 1108 | 099 | 161|241 | 3.26
$9234 4517 | 1.00|1.94 | 352|480
s13207 | 16588 | 0.99 | 1.96 | 3.82 | 6.91
s15850 | 8395 | 098|192 | 355|561
s35932 | 1124 | 1.01| 168|234 | 2.85
s38417 | 5112 | 097|199 |387 | 7.31

5$15850-s38417: 1000 random vectors
all others: 10000 random vectors
dynamic redistribution

137

Table 7.4 Pr oper PROOFS results on Intel Paragon: random vectors

Circuit | PROOFS Pr oper PROCFS
(sec) Processors
(speedup)
1 2 4 8 16 | 32 | 64
s208 87.6 098 | 152 | 259 | 423 | 6.27 | 7.29 | 8.14
s2080 314 |097 114|167 |208|297 306|301
s298 325 094|108 |130|128|144 142|144
s344 389 097|102|105|111|2114 109|116
s349 394 | 097101104 |110|114|117|116
s382 1070 | 097|152 |231|284|315|343|347
s386 25.2 094|099 | 144|237 |280| 303|302
400 1181 | 097 |153|229|284 315|346 | 355
420 230.7 | 097 |172|297|471| 722|970 | 10.6
444 1383 | 098|158 | 247 |313|3.69 379|419
s510 366.2 | 098|177 334|559 785|114 |151
s526n 1620 | 100|167 |243|311|351|382|412
s526 166.7 | 1.00 | 165|252 |3.16 | 3.69 | 414 | 4.33
s641 504 | 095|095|133|141|142|143|144
s713 58.0 096|099 |144|159|160| 158|158
s820 101.3 | 098|127 |1.65|190|195|200|195
s832 1041 | 098|130 |1.65|192|198 204 | 202
s838 619.2 | 099 | 181|322 513 | 747|999 | 11.7
$953 9594 099|187 (339|569 798|117 | 137
s1196 48.8 095|104 |130|133|143|161|159
s1238 59.8 095|108 |135|150|167 176|189
s1423 356.6 | 099 | 171|274 |389 |505|6.02]|6.37
51488 1909 | 097|129 |149|155 | 158|162 | 165
51494 1940 |098|131|151 158|161 |165 170
sb378 1094 | 101|163 237|317 |335|3.60 | 353
$9234 4716 | 1.00| 192|348 500|747 947|121
s13207 | 1685 | 098|192 | 368 |6.46 | 9.18 | 13.1 | 16.0
s15850 | 1034 | 098 | 187|348 |559 822|110 136
s35932 | 1105 [0.99| 165|227 (273|304 321|321
s38417 | 5401 | 099|213 |415|782|133|21.0]|277
38584 | 3370 | 097|189 350|580 |753|125]|153

5$13207-s38584: 1000 random vectors

all others: 10000 random vectors

dynamic redistribution

138

Table 7.5 Pr oper PROOFS results on Sun 4/670MP: random vectors

Circuit | PROOFS Pr oper PROOFS
(sec) Processors
(speedup)
1 2 3 4
s208 83.3 097|150 | 211 | 2.28
s2080 315 1.03 | 1.16 | 1.46 | 1.66
s298 32.3 099|109 112|112
s344 355 094 | 1.03 | 1.05 | 0.92
s349 364 094|104 107 0.99
s382 101.7 | 100|141 |174|1.86
s386 24.1 089|099 114|129
400 106.7 | 104|159 | 185|180
420 246.6 | 112|176 | 253|282
444 1229 | 096|164 | 183|199
s510 3248 |1.06|182| 214 | 257
s526n 161.7 113188191 | 224
s526 1669 | 110|187 | 201|238
s641 414 | 093|088 091|097
s713 46.9 0.82 | 0.79 | 1.00 | 1.05
s820 92.7 099|124 129|143
s832 95.1 099|124 143|130
s838 5717 | 101|195 | 223|227
$953 7905 | 108|186 | 2.07 | 240
s1196 45.9 095|102 | 1.27 | 1.09
s1238 534 093|104 117|117
s1423 3080 | 099|143 | 168|197
s1488 1649 |093|125|140 | 119
s1494 166.2 | 091|126 135|131
s5378 9787 |097]141|175| 140
$9234 4353 | 0.97| 153|181 | 177
s13207 | 17973 | 101|179 | 2.08 | 2.18
s15850 | 8684 | 097|162 | 195|191
s35932 | 1068 | 091 | 146|148 | 1.62
s38417 8270 097|141 | 153|148
s38584 | 3519 | 095|147 |177|1.76

515850-s38584: 1000 random vectors
all others: 10000 random vectors
dynamic redistribution

139

Table 7.6 Pr oper PROCOFS results on Intel iPSC/860: STG vectors

Circuit | PROOFS Pr oper PROOFS
(sec) Processors
(speedup)
1 2 4 8
s208 11 099 | 1.33 | 1.95 | 3.09
s298 0.7 093|085 129|125
s344 05 091|100 111|116
s349 05 091|098 109|116
s382 13.2 094|112 130|151
400 10.4 094|117 | 157|188
420 4.7 097|164 | 262 | 3.80
A44 154 094 1120|148 | 181
s526 9.2 095|130 | 1.67 | 203
sb26n 6.5 094 | 115|161 | 170
s641 0.9 097 | 099 | 144 | 1.49
s713 1.0 098|103 | 165|178
s820 3.8 094|100 | 122|137
s832 3.6 093] 100|124 |138
s838 10.9 101 |1.83| 313 | 4.87
s953 1.6 1.01| 172 | 2.66 | 3.36
s1196 3.0 099|125 177|216
s1238 3.8 098|124 |175|213
51423 3.1 100 | 175|280 | 3.34
s1488 11.0 099|103 119|125
s1494 9.2 098 | 1.06 | 1.20 | 1.29
sb378 47.5 099 | 156 | 233 | 3.23
$9234 15 1.01| 1.50 | 2.37 | 3.50
s35932 | 1541 |1.00| 169|254 | 343

dynamic redistribution

140

aly inferior to those of random vectors, which is expected; the amount of fault simulation
required isless since faults are dropped quickly. Additionally, where the added level of de-
tection occurs unevenly, more fault redistribution is required, which increases the amount
of good circuit simulation required.

Table 7.7 Pr oper PROCOFS results on Intel Paragon: STG vectors

Circuit | PROOFS Pr oper PROOFS
(sec) Processors
(speedup)

1 2 4 8 16 | 32 | 64
s208 11 099|114 210|273 484|181 |1.06
s298 0.7 095081132 135|130 |122|055
s344 05 095|085(119|132| 127|108 |0.62
s349 05 095|084 |120|128| 129|113]|0.63
s382 12.8 096|117 |133|155|186|184 171
400 10.0 096|122 | 159|190 |241|243|214
420 4.6 098 | 1.66 | 2.60 | 253 | 5.01 | 6.37 | 4.61
A44 14.9 097 | 125|152 |189|226|223|218
s526 9.0 099 | 133|176 212|275 | 283|287
s526n 6.3 073124170 |183| 224|238 |219
s641 13 137|134|187|188|1.79| 152|112
s713 0.9 097|081 |151|163|164|153|140
s820 3.8 097|109 |131|149|152|153|124
s832 3.6 097|108 |132|153| 159|161 |153
s838 10.5 098|178 | 3.08 | 355 | 5.07 | 5.74 | 104
s953 15 1.00|159|239|182 201|106 | 223
s1196 29 097|123 | 177|157 | 177|174 | 206
s1238 3.7 097|128 |179|221| 253|268 | 240
s1423 3.0 100|169 | 275|362 | 356 | 145 | 2.83
s1488 10.9 098|106 |120|125|127 (129|131
s1494 9.2 098|108 |124|130|135|134|138
s5378 47.0 101|157|225|310 319|332 349
9234 15 103|149 | 232|354 497|570 | 2.88

s35932 | 1532 |[1.00| 168|241 |321|369|380|4.35

7.7 Evaluation

7.7.1 Scalability

dynamic redistribution

141

Effort wastaken to ensurethat thefault redistribution schemein Pr oper PROOFSwould
not limit scalability because of the serialization of asingle actor or the resource limitations
and processing power of a single processor. While this effort was successful, the most sig-
nificant barrier to scalability in Pr oper PROOFSistherevaluation of good circuit valueson

Table 7.8 Pr oper PROOFS results on Sun 4/670MP: STG vectors

Circuit | PROOFS Pr oper PROOFS
(sec) Processors
(speedup)
1 2 3 4
s208 1.0 097 | 148 | 204 | 2.29
s298 0.7 1.02 | 104 | 118 | 1.15
s344 05 090 | 103|120 | 101
s349 05 094 | 107 | 1.04 | 0.95
s382 12.4 095|114 104|134
400 9.1 099 | 1.23 | 147 | 1.50
420 4.9 113 | 1.75 | 2.60 | 2.64
A44 13.8 091|126 124|138
526 9.1 107|149 | 155|173
sb26n 6.5 112 | 1.43 | 1.53 | 1.56
s641 0.8 0.96 | 0.97 | 0.97 | 0.88
s713 0.8 084|087 102|111
s820 35 095|107 | 118|112
s832 3.3 095|105 111|117
s838 9.8 1.02 | 1.88 | 2.08 | 2.59
s953 1.2 110| 1.70 | 1.66 | 1.64
s1196 2.7 095|119 142|134
s1238 3.2 094118134133
s1423 2.6 099|154 |185|173
s1488 9.5 094 | 103|113 | 106
s1494 8.0 092|109 116 |1.01
sb378 42,5 098|138 | 151|145
$9234 15 092|116 |1.20| 1.10
s35932 | 149.2 [0.92| 140|162 | 1.58

dynamic redistribution

142

every processor. Because of this extra evaluation—not needed in the serial case—overhead
grows linearly with the number of processors. This overhead is compounded in Pr oper -
PROCFS by the fact that fault redistribution implies restarting the good circuit simulation;

the number of good circuit ssmulationsis not bounded by the number of processors.

Toinvestigateissues of scalability, we studiedin detail the run time dynamics of s35932
on the Paragon (Table 7.4). While large, this circuit demonstrated only a small amount of
speedup over al configurations. Pr oper PROOFS was instrumented to record the amount
of time and number of events required by good and faulty circuit simulation. Results are

143

shown in Table 7.9. A study of the number of events evaluated in each case shows that the
the extra effort expended in the parallel version isvirtually all due to multiple good circuit
eva uations which do not occur in the serial algorithm. Not only must good circuit simula-
tion be performed per processor, it must also be duplicated in part when a set of faultsisre-
distributed. Whileit was anticipated that communication due to fault redistribution scheme
might be a bottleneck, in practice fault redistribution is infrequent and the redistribution
process itself contributes little overhead. Virtually al of the overhead on large circuitsis
incurred by the the extra good circuit simulation on al processors and by the necessity to
duplicate good simulation for all unsimulated vectors when a set of faultsisreceived in re-
sponse to a split request.

The good circuit resimulation overhead caused by fault redistribution effectively limits
the advantage of dynamic redistribution over that of static distribution. Table7.10 compares
the results of static and dynamic fault distribution. The data show that while the dynamic
redistribution scheme achieves either equivalent or better results than the static case, the
incremental speedup islower than if fault redistribution incurred no overhead.

We have attempted to devel op a scheme for mitigating the extra costs implied by fault
paralelism. For example, the extra simulations caused by load redistribution can be elimi-
nated by saving the state of the good circuit the first timeit is computed on each processor
and then by using this saved state in later passes that occur as a result of fault redistribu-
tion. Unfortunately, this approach exhibits two flaws. First, it does not address the issue of
the first good simulation on each processor which is a significant amount of the duplicated
effort on large circuits. Second, the cost of saving the good circuit state for large circuits

Table 7.9 Good and faulty simulation of s35932 on Paragon

Processors Good Faulty
Millions of Events | Time (sec) | Millions of Events | Time (sec)
1 8.04 774 34.6 524.2
2 30.1 290.1 34.7 519.3
4 76.5 738.3 34.8 522.9
8 137 1324 35.1 523.4
16 227 2182 35.2 538.9
32 363 3496 35.3 552.3
64 557 5393 355 601.7

1000 random vectors
dynamic redistribution

144

Table 7.10 Comparison of static and dynamic fault distribution on iPSC/860

Circuit | PROOFS | Dynamic Distribution Static Distribution
(sec) Processors Processors
(speedup) (speedup)
1 2 4 8 1 2 4 8
s208 9.1 099|142 |238|386|099|151 260|448
s2080 3.6 095|1.00|157|197 095|140 179|198
s298 4.5 094 |1.02|151|159|094 121|160 | 162
s344 4.4 089|099 |105|110|089|101|105|110
s349 4.5 0.89 098|104 |110|0.89|101| 104|109
s382 10.9 094|137 211 | 254|094 |129 192|238
s386 3.0 093|089 |130|212|093|138 168|219
400 12.2 095|142 212|267 095|136 191|245
420 235 097|162 | 266 | 438|097 | 149 | 256 | 443
A44 145 096|148 (23229 | 096|134 202|284
s510 37.8 096|176 | 3.24 | 536 | 096 | 1.62 | 255 | 4.41
s526 174 096 | 1.56 | 2.39 | 296 | 0.96 | 1.45 | 1.87 | 2.52
s526n 16.8 096 |153|231|289|096 141|188 |254
s641 59 096|094 |138|157|096 112|150 | 157
s713 6.7 0971099 |151|173|097 119|158 174
s820 115 096|119 |155|178|096|1.20 154|183
s832 11.7 095|11.20|155|183|095|122 155|188
s838 63.2 101|182 312|484 | 101|150 | 255 |4.37
s953 1019 |[103|190|335|564|1.03|141|266 | 3.96
s1196 9.9 099120172208 |099|141 190|228
s1238 114 099|127 178|227 099|150 200|251
s1423 46.1 098|172 290 | 437|098 | 164|270 | 414
s1488 215 098130151 |163|098|1.26 150|165
s1494 21.8 096|131 |156 168|096 127|152 | 167
s5378 150.3 [099 | 173|275|430|099|134|219 | 3.74
s9234 4588 | 1.00| 193|350 |4.79|1.00| 160|248 | 290
s13207 1598 | 099|197 |381|682|099 138|193 |324
s15850 | 966.8 | 098 |1.92 | 358|586 |098 | 175|296 | 4.88
s35932 1124 101|168 234|285 |101|139|190 243
s38417 | 5112 | 097|199 |387|731|097|184 | 3.60|6.49

1000 random vectors

145

and for large numbers of vectors is prohibitive. Other techniques of speeding a very fast
event-driven fault ssimulator like PROOFS are topics for future study.

7.7.2 Rescheduling

The method of rescheduling worked well for balancing load and required essentially no
tuning. Because the operation of an actor sending a continuation to itself is always alocal
operation, rescheduling can be used without regard to the network communication latency
of multicomputers. The same type of rescheduling could be used in Pr oper Hl TECtoin-
crease the currency of fault data and would improve performance results. However, in the
HI TEC implementation, the point at which rescheduling would occur—when a backtrack
is required—is relatively far down the call stack; therefore, extra effort is required to en-
able exit and return to the same point within the code during rescheduling. In the case of
Pr oper PROOFS, because the per-vector loop in PROOFS is at a high level no additional
state has to be saved.

7.7.3 Termination detection

As mentioned in Chapter 5, quiescence detection is not a composable property; there-
fore, any use of quiescence in the logic of an algorithm should be examined for limitations.
The quiescence-based terminati on detection algorithmwas devel oped for Pr oper PROOFS
to provide experience and knowledge about the useful ness of theterminationinterfaceinthe
AlF and, in particular, the usefulness of user-level ‘hidden’ tasksas ameta-programmability
feature. Although using quiescence to complete fault ssimulationis at ahigh level asimple
problem, its practical implementation exposes various subtle issues, each of which must be
identified—uwhich sometimes requires significant debugging—and handled. In the case of
Pr oper PROCFS, the utility of termination viaquiescenceisdoubtful. Thedirect approach
described in Subsection 7.4.2.5 is simpler to implement, composable, and potentially more
efficient. This experience exemplifies the position stated in Chapter 5 that the compl exity
and noncomposability of quiescence detection mitigatesits utility.

7.7.4 Applicability

The approach taken in this chapter has been the generation of atechniquefor fault sim-
ulation applications; no attempt was made to specifically address the use of the fault simu-
lator within atest generation application, because both the static interface and the dynamic

146

context differ sufficiently to make some of the techniques applicable to an application in-
applicable in amodule to be composed with atest generator. The serial object is still used
within Pr oper HI TEC. Still, though generally the use of a per-thread aggregate would be
considered excessivein atest application, it isclear that astest generationis scaled to larger
machines sizes, the use of a seria object must at some point become a bottleneck; signs
of this limitation were observed in running Pr oper Hl TEC. An intermediate approach—
between the alternatives of serial and per-thread—would be to use an aggregate whose size
was a function of the number of threads in the system. For example, one could use a dis-
tribution in which the number of representatives was a fraction of the number of nodesin
the machine. This use represents adirect application of the multiaccess principle proposed
by Chien [5]. Because the fault smulator is aready specified as an aggregate, extension
to support other than per-thread distributions would be minor and completely backwardly
compatible with the fault simulator application.

7.7.5 Parallelization Effort

Aswasthe casefor Pr oper H TEC, Pr oper PROOFS was created through the use of
derivation to express paralelism. Again, the only fundamental change was the modifica-
tion of several functionsin the seria code to use dynamic binding in order that those func-
tions could be overridden in derived classes. In the case of Pr oper PROOFS, only asingle
class, Faul t Si mul at or, was modified in this way. Thirteen of the forty-four member
functionswhere made virtual. Most of these modificationswerein the area of gathering the
fault ssmulation results, which at the end of the simulation is distributed among aggregate
representatives.

Pr oper PROOFSwasdeveloped | ater than Pr oper HI TEC, when thelibrary wasmore
stable, which made measurement of the parallelization processeasier. Again, whenthetime
necessary to clean up theoriginal codeisnot included, the parallelization effort took approx-
imately one man-month, with additional improvements and debugging requiring approxi-
mately one-half man-month.

Implementation of parallelism of PROOFS required fewer changes than did paralleliza-
tionof HI TEC. Table 7.11 reports several metrics of the PROOFS and Pr oper PROOFSim-
plementations. Aswith Pr oper HI TEC, virtualy al the significant classes are shared be-
tweentheparallel and serial versions. Amongthefour new classes, theGi r cui t Aggr egat e
classisthesameasthat usedin Pr oper HI TEC. A breakdown of the number of actor meth-
ods by classisshown in Table 7.12. Table 7.13 presents the numbers of member functions

147

Table 7.11 Comparison of soffware metrics for PROOFS and Pr oper PROOFS

Metric PROOFS | Pr oper PROOFS | Shared

Lines of code 455 3938 5659

Lines of code with *;’ 140 733 1981

Classes 0 4 12
excluding Act or Met hod and argument classes

Act or Met hod classes 0 17 0

Act or Met hod argument classes 0 5 0

Table 7.12 Act or Met hods for each class in Pr oper PROOFS

Number of
Pr oper PROOFS class Act or Met hods
Faul t Si mul at or Aggr egat e 7
Circuit Aggregate 4
Userlnterface 6

in the concurrent types and the seria types from which they are derived. These data again
show that the majority of featuresin Pr oper PROOFS are inherited from PROOFS.

Table 7.13 Member functions in PROOFS and Pr oper PROOFS

Number of Number of
PROCFS class member functions | Pr oper PROOFS class | member functions
Faul t Si nul at or 44 Faul t Si mul at or - 16
Aggr egat e
Crcuit 47 Circuit Aggregate 6

148

Chapter 8
CONCLUSIONS

We have presented an interface and runtimelibrary implementation for concurrent object-
oriented programming suitable for a statically typed language which implements the actor
model of concurrent computation. Theinterface containsarich set of interfacesfor express-
ing actor computations with emphasis on support for composable meta-programmability.
We demonstrated how a library-based implementation can be used to incrementally paral-
lelize an existing seria code with only incremental increases in devel opment cost.

We have demonstrated the use and efficacy of the library in the parallelization of two
significant CAD applications, Pr oper Hl TECfor test generation and Pr oper PROOFSfor
fault simulation. We presented results for these applications when they were run on shared
memory, distributed memory, and hybrid architectures. We conclude with some observa-
tions on the effectiveness and efficiency of the interface and implementation.

Thefeatures of the library that have proven to be the most effectivein expressing paral-
lelism are first class names, first class statically typed continuations, and derivation-based
paralelization. Theability to create, operate on, and i nterchange actor and aggregate names
hasturned out to be very effective inimplementing an interface that has a high degree of ex-
pressibility but that does not make code unacceptably interdependent, thus restricting reuse.
We believe that the expressibility of names linked with statically typed continuations will
be key to implementing reusable application libraries that can be easily composed to create
new applications.

Our experiences using derivation to incrementally parallelize existing seria applica
tionslead usto believe that this feature will be akey to parallelizing existing codes written
in object-oriented |languages without doubling development and support costs. For many
medium-grain applications, the added cost of dynamic binding will not be measurable, and
theimpact on the expressibility and readability of the serial codewill be nominal or positive.

149

The ability to compose meta-programmability features—to use different representations
in modules combined to create a single application—has been useful in the applications ad-
dressed so far and has significant potential in the development of modular solutionsto com-
mon problemsin VLSl CAD and other domains. Although global meta-programmability
has not yet been used in CAD applications, several ways of capitalizing on the ability to
refine the underlying run time system have generated significant speculation.

A significant reduction in porting difficulty hasbeen achieved at the sametime providing
aricher interface which facilitates architectures tuning. This reduction is primarily due to
the implementation of the high-level interface in an open manner and via a well defined,
parameterizable, low-level interface.

In our work using the library, we identified a number of cases that either required te-
dious and possibly error-prone coding techniques or for which expressibility of the current
interface is not sufficient. The two current limitations in the current implementation, the
inability to derive from the Act or classvirtualy and the inability to cast actor namesin a
manner similar to casting pointers have been solved by recent work by the Ct++ standard-
ization committee. However, the necessity to use macros to implement the library does not
appear to have a solution short of alanguage extension or a new language. Experience to
date indicates that macros, while inelegant, become acceptable with familiarity.

The basic actor model provides no way of directly expressing an actor method call that
blocks or returns avalue. Although continuation passing style is sufficient to express any-
thing requiring ablocking value and in general expresses greater parallelism, there are cases
in which data dependencies preclude parallelism; the use of CPS in those cases can be te-
dious. Although implementation can be difficult and semantics may be difficult to specify,
experience indicates that blocking calls are of sufficiently great utility to justify significant
effort in their design and implementation.

The actor interface provides no direct support for 1/0O operations, and the APA provides
direct support only for the standard streams, st dout andst der r . A richer interface with
ahigher-level, i.e., AlF-leve, interface would be valuable.

Although the APA providesamode of thelogical interconnection of processors, it does
not capture the relative power or dynamic load of individual processors. For efficient use
of workstation clusters, some method of determining static processing power and dynamic
load will berequired. These methodswould a so simplify the composition of modules. Rep-
resentation of load and power is a significant abstraction problem.

[1]

[2]

[3]

[4]

[3]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

150

REFERENCES

B. Ramkumar and P. Banerjee, “ProperCAD: A portable object-oriented parallel en-
vironment for VLS| CAD,” IEEE Transactions on Computer Aided Design, vol. 13,
pp. 829-842, July 1994.

K. De, B. Ramkumar, and P. Banerjee, “ProperSY N: A portableparallel algorithmfor
logic synthesis,” in Digest of Papers, International Conference on Computer-Aided
Design, pp. 412-416, Nov. 1992.

B. Ramkumar and P. Banerjee, “ProperEXT: A portable parallel agorithm for VLS|
circuit extraction,” in Proceedings, 7th International Parallel Processing Sympo-
sium, pp. 434-438, 1993.

S. Kim, “Improved algorithms for cell placement and their parallel implementa
tions,” Ph.D. dissertation, University of Illinois, Urbana, IL, July 1993.

A. A. Chien, Concurrent Aggregates. Supporting Modularity in Massively Paralléel
Programs. Cambridge, MA: The MIT Press, 1993.

G. Agha, “ Concurrent object-oriented programming,” Communications of the ACM,
pp. 125141, Sept. 1990.

Kendall Square Research, KSR-1 Technical Summary, Waltham, MA, 1992.

D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. L. Hennessy, M. Horowitz, and
M. Lam, “The Stanford DASH,” IEEE Computer, vol. 25, pp. 6379, Mar. 1992.

Intel Supercomputing Systems Division, Paragon XP/S Product Overview, Beaver-
ton, OR, 1991.

L. Lamport, “How to make a multiprocessor computer that correctly executes multi-
process programs,” |EEE Transactions on Computers, pp. 241-248, Sept. 1979.

Thinking Machine Corporation, The Connection Machine CM-5 Technical Summary,
Cambridge, MA, 1991.

P. Pierce and G. Regnier, “ The Paragonl] implementation of the NX message pass-
inginterface,” in Proceedings of the Scal able High-Perfor mance Computing Confer-
ence, pp. 184-190, May 1994.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

151

Message Passing Interface Forum, MPI: A Message Passing Interface Standard,
1994. Availableashtt p: // ww. nts. anl . gov/ npi / npi -report. ps.

A.Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore, and V. Sunderam, “PVM
and HeNCE: Tools for heterogeneous network computing,” in Environments and
Tools for Parallel Scientific Computing, vol. 6 of Advances in Parallel Computing,
Amsterdam: North-Holland, 1993, pp. 139-153.

Parasoft Corporation, Express Reference Guide for FORTRAN Programmers,
Pasadena, CA, 1992.

A. W. Appel, Compiling with Continuations. Cambridge, England: Cambridge Uni-
versity Press, 1992.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “ Active messages.
A mechanism for integrated communication and computation,” in Proceedings of
the 19th Annual International Symposium on Computer Architecture, pp. 256266,
May 1992.

C. M. Pancake and D. Bergmark, “Do parallel languages respond to the needs of sci-
entific programmers?,” IEEE Computer, vol. 23, pp. 13-23, Dec. 1990.

C. M. Pancakeand C. Cook, “What usersneed in parallel tool support: Survey results
and analysis,” in Proceedings of the Scal abl e High-Perfor mance Computing Confer-
ence, pp. 40-47, May 1994.

J.R. Corbin, The Art of Distributed Applications, (Sun Technical Reference Library).
New York: Springer-Verlag, 1991.

D. Gannon and J. K. Lee, “Object-oriented parallelism: pC++ ideas and experi-
ments,” in Proceedings of the Japan Society for Parallel Processing, pp. 13-23,
1993.

J. K. Lee and D. Gannon, “Object oriented parallel programming experiments and
results,” in Proceedings, Supercomputing ' 91, pp. 273-282, Nov. 1991.

F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and B. Mokhr,
“Implementing aparalel Ctt runtime system for scalable parallel systems,” in Pro-
ceedings, Supercomputing ' 93, pp. 588-597, Nov. 1993.

A. Maony, B. Mohr, P. Beckman, D. Gannon, S. Yang, , and F. Bodin, “Performance
analysis of pCt+: A portable data-parallel programming system for scalable paral-
lel computers,” in Proceedings, 8th International Parallel Processing Symposium,
pp. 7584, Apr. 1994.

K. M. Chandy and C. Kesselman, “ Compositional C++: Compositional parallel pro-
gramming,” in Proceedings of the 5th Workshop on Compilers and Languages for
Parallel Computing, pp. 79-93, 1992.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

152

Concurrent Systems Architecture Group, “lllinois Concert Ct*+ (IC-Ct*) language
report 1.0,” Department of Computer Science, University of Illinois, Urbana, IL,
Tech. Rep. In preparation.

A. A. Chien, V. Karamcheti, and J. Plevyak, “The Concert system — compiler
and runtime support for efficient, fine-grained concurrent obj ect-oriented programs,”
Department of Computer Science, University of Illinois, Urbana, IL, Tech. Rep.
UIUCDCS-R-93-1815, June 1993.

W. J. Leddy and K. S. Smith, “The design of the experimental systems kernel,” in
Proceedings of the 4th Conference on Hypercubes, Concurrent Computers and Ap-
plications, pp. 10-17, Mar. 1989.

B. Stroustrup, The Ct* Programming Language. Reading, MA: Addison-Wesley
Publishing Company, 2nd ed., 1991.

H. Baker and C. Hewitt, “The incremental garbage collection of objects,” in Con-
ference Record of the Conference on Al and Programming Languages, pp. 55-59,
Aug. 1977.

J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Littlefield, “The
Amber system: Parallel programming on a network of multiprocessors,” Depart-
ment of Computer Science and Engineering, University of Washington, Seattle, WA,
Tech. Rep. 89-04-01, Sept. 1989.

B. N. Bershad, E. D. Lazowska, and H. M. Levy, “PRESTO: A system for
object-oriented parallel programming,” Software—Practice and Experience, vol. 18,
pp. 713-731, Aug. 1988.

A.D. Birrell and B. J. Nelson, “Implementing remote procedure calls,” ACM Trans-
actions on Computer Systems, vol. 2, pp. 39-59, Feb. 1984.

R. Chandra, A. Gupta, and J. L. Hennessy, “Integrating concurrency and dataabstrac-
tion in a paralel programming language,” Computer Science Laboratory, Depart-
ments of Electrical Engineering and Computer Science, Stanford University, Stan-
ford, CA, Tech. Rep. CSL-TR-92-511, Feb. 1992.

N. Carriero and D. Gdernter, “Linda in context,” Communications of the ACM,
vol. 32, pp. 444458, Apr. 1989.

N. Carriero and D. Gelernter, “How to write parallel programs: A guide to the per-
plexed,” ACM Computing Surveys, vol. 21, pp. 323-357, Sept. 1989.

G. Aghaand C. Calsen, “ActorSpaces. A model for scalable heterogeneous com-
puting,” in Proceedings of the 26th Hawaii International Conference on System Sci-
ences, 1993.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

153

G. Agha and C. J. Callsen, “ActorSpaces. An open distributed programming
paradigm,” in Proceedings of the 4th ACM Symposium on Principles & Practice of
Parallel Processing, pp. 23-32, May 1993.

L. D. Cagan and A. H. Sherman, “Linda unites network systems,” |IEEE Spectrum,
vol. 30, pp. 31-35, Dec. 1993.

A. Deshpande and M. Schultz, “Efficient parallel programming in Linda,” in Pro-
ceedings, Supercomputing ' 92, pp. 238-244, Nov. 1992.

B. R. Seyfarth, J. L. Bickham, and M. R. Fernandez, “Glenda: An environment for
easy parallel programming,” in Proceedings of the Scal able High-Performance Com-
puting Conference, pp. 637-641, May 1994.

N. H. Gehani and W. D. Roome, “Concurrent C+*: Concurrent programming with
class(es),” Software—Practice and Experience, pp. 1157-1177, Dec. 1988.

N. H. Gehani and W. D. Roome, “Implementing concurrent C,” Software—Practice
and Experience, pp. 266-285, Mar. 1992.

M. C. Rinard, D. J. Scales, and M. S. Lam, “Heterogeneous parallel programming in
Jade,” in Proceedings, Supercomputing ’ 92, pp. 245-256, Nov. 1992.

A. S. Grimshaw, “An introduction to parallel object-oriented programming with
Mentat,” Department of Computer Science, University of Virginia, Charlottesville,
VA, Tech. Rep. TR-91-07, 1991.

The Mentat Research Group, Department of Computer Science, University of Vir-
ginia, Mentat 2.5 Programming Language Reference Manual, Charlottesville, VA,
1993.

P. A. Buhr, G. Ditchfidld, R. A. Stroobosscher, and B. M. Younger, “uCt: Con-
currency in the object-oriented language Ct*,” Software—Practice and Experience,
vol. 22, pp. 137-172, Feb. 1992.

C. M. Chase, A. L. Cheung, A. P. Reeves, and M. R. Smith, “Paragon: A paralléel
programming environment for scientific applications using communications struc-
tures,” in Proceedingsof the Inter national Conference on Parallel Processing, vol. 1,
pp. 211-218, 1991.

C. Baguero and F. Moura, “Concurrency annotations in Ct+,” SGPLAN Notices,
vol. 29, pp. 61-67, July 1994.

P. America, “POOL-T: A parallel object-oriented language,” in Object-Oriented
Concurrent Programming, A. Yonezawa and M. Tokoro, Eds., Cambridge, MA: The
MIT Press, 1987, pp. 199-220.

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

154

G. A. Agha, Actors: A Model of Concurrent Computation in Distributed Systems.
Cambridge, MA: The MIT Press, 1986.

T. Niermann and J. H. Patel, “HITEC: A test generation package for sequential cir-
cuits,” in Proceedings of the European Design Automation Conference, pp. 214-218,
Feb. 1991.

G. Agha, “Semantic considerations in the actor paradigm of concurrent computa
tion,” Library Notes of Computer Science, vol. 197, pp. 151-179, July 1984.

B. Stroustrup, The Design and Evolution of Ct+. Reading, MA: Addison-Wesley
Publishing Company, 1994.

Pure Software Inc., Quantify User’s Guide, Sunnyvale, CA, 1993.

M. A. Ellisand B. Stroustrup, The Annotated Ct+ Reference Manual. Reading, MA:
Addison-Wesley Publishing Company, 1990.

A. Goldberg and D. Robson, SMALLTALK-80: The Language and its Implementa-
tion. Reading, MA: Addison-Wesley Publishing Company, 1983.

G. Kiczales, J. des Rivieres, and D. G. Bobrow, The Art of the Metaobject Protocol.
Cambridge, MA: The MIT Press, 1991.

D. R. Edelson, “ Smart pointers. They’ re smart, but they’ re not pointers,” in USENIX
Ct+ Technical Conference Proceedings, pp. 1-20, Aug. 1992.

S. Fralund and G. Agha, “A language framework for multi-object coordination,” in
Proceedings of the 1993 European Conference on Object-Oriented Programming,
1993.

G. Agha, S. Fralund, W. Kim, R. Panwar, A. Patterson, and D. Sturman, “Abstrac-
tion and modul arity mechanismsfor concurrent computing,” IEEE Parallel and Dis-
tributed Technology, pp. 3-13, May 1993.

G. Agha, “An overview of actor languages,” S GPLAN Notices, vol. 21, pp. 58-67,
Oct. 1986.

P. de Jong, “Compilation into actors,” SSGPLAN Notices, vol. 21, pp. 68-77,
Oct. 1986.

H. Lieberman, “Concurrent object-oriented programming in Actl,” in Object-
Oriented Concurrent Programming, A. Yonezawa and M. Tokoro, Eds., Cambridge,
MA: The MIT Press, 1987, pp. 9-36.

D. Theriault, “Issues in the design and implementation of Act2,” MIT Artificial In-
telligence Laboratory, Cambridge, MA, Tech. Rep. 728, June 1983.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

155

E. Shibayama and A. Yonezawa, “Distributed computing in ABCL/1,” in Object-
Oriented Concurrent Programming, A. Yonezawa and M. Tokoro, Eds., Cambridge,
MA: The MIT Press, 1987, pp. 129-158.

J. Ferber and P. Carle, “ Actors and agents as reflective concurrent objects: A MER-
ING 1V perspective,” IEEE Transactionson Systems, Man, and Cybernetics, vol. 21,
pp. 1420-1436, Nov. 1991.

C. Houck and G. Agha, “HAL.: A high-level actor language and its distributed imple-
mentation,” in Proceedings of the International Conference on Parallel Processing,
pp. 158-165, Aug. 1992.

W. Fenton, B. Ramkumar, V. A. Saletore, A. B. Sinha, and L. V. Kal &, “ Supporting
machine independent programming on diverse parallel architectures,” in Proceed-
ings of the International Conference on Parallel Processing, Aug. 1991.

A. A. Chien and W. J. Dally, “Concurrent aggregates (CA),” in Proceedings of the
2nd ACM SIGPLAN Symposium on Principles & Practice of Parallel Processing,
pp. 187-196, Mar. 1990.

V. Karamcheti and A. Chien, “Concert — efficient runtime support for concurrent
object-oriented programming languages on stock hardware,” in Proceedings, Super-
computing ' 93, pp. 33-36, 1993.

L. V. Kag, “The Chare Kernd parale programming language and system,” in Pro-
ceedings of the International Conference on Parallel Processing, vol. 11, Aug. 1990.

L.V.Kaéand S. Krishnan, “Charmt: A portable concurrent object oriented system
based on Ct*,” in Proceedings of the 1993 Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pp. 91-108, Sept. 1993.

L. V. Kaé, B. Ramkumar, V. Saletore, and A. Sinha, “Prioritization in parallel sym-
bolic computing,” Library Notes of Computer Science, 1993.

L.V.Kaéand A. B. Sinha, “Information sharing mechanismsin parallel programs,”
in Proceedings, 8th International Parallel Processing Symposium, pp. 461-468,
Apr. 1994.

A. Gursoy and L. V. Kag, “Dagger: Combining benefits of synchronous and asyn-
chronous communication styles,” in Proceedings, 8th International Parallel Pro-
cessing Symposium, pp. 590-596, Apr. 1994,

A. Gursoy and L. V. Kalg, “High level support for divide-and-conquer parallelism,”
in Proceedings, Supercomputing ' 91, pp. 283-292, Nov. 1991.

D. Kafuraand K. H. Leg, “ACT++: Building aconcurrent Ct+ with actors,” Journal
of Object-Oriented Programming, pp. 25-37, May 1990.

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

156

D. G. Kafuraand K. H. Lee, “Inheritance in actor based concurrent object-oriented
languages,” The Computer Journal, vol. 32, no. 4, pp. 297-304, 1989.

J. Deshiens, M. Lavoie, S. Pouzyreff, P. Raymond, T. Tamazouzt, and M. Toulouse,
“CLAP: An object-oriented programming system for distributed memory paralléel
machines,” OOPS Messenger, vol. 5, pp. 44-48, Jan. 1994.

J. Boykin, D. Kirschen, A. Langerman, and S. LoVerso, Programming Under Mach,
(Addison-Wesley UNIX and Open System Series). Reading, MA: Addison-Wesley
Publishing Company, 1993.

R. A. Gingell, J. P Moran, and W. A. Shannon, “Virtual memory architecture in
SunOS,” in USENIX Association Conference Proceedings, pp. 81-94, June 1987.

J. B. Postel, “User datagram protocol,” Internet Request For Comments RFC-768,
Aug. 1980. Availableasftp://ds.internic.net/rfc768. txt.

D. E. Comer, Internetworking with TCP/IP Vol |: Principles, Protocols, and Archi-
tecture. Englewood Cliffs, NJ: Prentice Hall, 2nd ed., 1991.

D. E. Comer and D. L. Stevens, Internetworking with TCP/IP Vol I1: Design, Imple-
mentations, and Internals. Englewood Cliffs, NJ. Prentice Hall, 1991.

“User datagram protocol,” Internet Request For Comments RFC-791, Sept. 1981.
Availableasftp://ds.internic.net/rfc791.txt.

“Transmission control protocol,” Internet Request For Comments RFC-793,
Sept. 1981. Availableasftp://ds.internic.net/rfc793.txt.

W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, (Addison-Wesley Pro-
fessional Computing Series). Reading, MA: Addison-Wesley Publishing Company,
1994.

V. Jacobson, “Congestion avoidance and control,” Computer Communication Re-
view, vol. 18, pp. 314-329, Aug. 1988.

D. C. Lynch and M. T. Rose, Eds., Internet System Handbook. Reading, MA:
Addison-Wesley Publishing Company, 1993.

C. C. Douglas, T. G. Mattson, and M. H. Schultz, “Paralel programming systems
for workstation clusters,” Yale University Department of Computer Science, New
Haven, CT, Tech. Rep. YALEU/DSC/TR-975, Aug. 1993.

F. J. Harrison, “ Portable toolsand applicationsfor paralel computers,” International
Journal of Quantum Chemistry, pp. 847-863, 1991.

R. Butler and E. Lusk, “User’s guide to the p4 paralel programming system,” Ar-
gonne National Laboratory, Argonne, IL, Tech. Rep. ANL-92/17, June 1992.

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

157

V. S. Sunderam, “PVM: A framework for parallel distributed computing,” Concur-
rency. Practice and Experience, vol. 2, pp. 315-339, 1990.

R. Konuru, J. Casss, R. Prouty, S. Otto, and J. Walpole, “A user-level process pack-
age for PVM,” in Proceedings of the Scalable High-Performance Computing Con-
ference, pp. 48-55, May 1994.

J. Ferber, “Conceptual reflection and actor languages,” in Meta-Level Architectures
and Reflection, Amsterdam: Elsevier Science Publishers B. V., 1988, pp. 177-193.

M. P. Peercy, “ Reconfiguration and recovery in distributed memory multicomputers,”
Ph.D. dissertation, University of Illinois, Urbana, IL, Sept. 1994.

G. Agha, S. Frelund, R. Panwar, and D. Sturman, “ A linquistic framework for the dy-
namic composition of dependability protocols,” in Dependable Computing for Crit-
ical Applications 3, Heidelberg: Springer-Verlag, Sept. 1993, pp. 345-363.

S. Krishnan and L. V. Kaég, “Efficient, machine-independent checkpoint and
restart for paralllel programs.” Availableasftp://ftp. cs. ui uc. edu/ pub/
CHARM paper s/ Checkpoi nt _SC93. ps. Z.

A.B. Sinha, L. V. Kag, and B. Ramkumar, “A dynamic and adaptive quiescence de-
tection algorithm,” Parallel Programming Laboratory, University of Illinois, Urbana,
IL, Tech. Rep. 93-11, Sept. 1993.

B. Ramkumar, “Machine independent “AND” and “OR” parallel execution of logic
programs,” Ph.D. dissertation, University of Illinois, Urbana, IL, Oct. 1990.

F. Mattern, “Global quiescence detection based on credit distribution and recovery,”
Information Processing Letters, vol. 30, pp. 195-200, Feb. 1989.

H. Abelson and G. J. Sussman, Eds., Sructure and Inter pretation of Computer Pro-
grams. Cambridge, MA: The MIT Press, 1985.

F. Brglez, D. Bryan, and K. Kominski, “Combinational profiles of sequential bench-
mark circuits,” in Proceedings of the | EEE Inter national Symposiumon Circuits and
Systems, June 1989.

M. R. Garey and D. S. Johnson, Computersand Intractability: A Guideto the Theory
of NP-Completeness. San Francisco, CA: W. H. Freeman and Company, 1979.

J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving,
(Addison-Wesley Seriesin Artificial Intelligence). Reading, MA: Addison-Wesley
Publishing Company, 1984.

P. Godl, “Animplicit enumeration algorithm to generate testsfor combinational logic
circuits,” |EEE Transactions on Computers, vol. 30, pp. 215222, Mar. 1981.

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

158

J. P. Roth, “Diagnosis of automatafailures. A calculus and amethod,” IBM Journal
of Research and Development, vol. 10, pp. 278-291, July 1966.

H. Fujiwara and S. Toida, “The complexity of fault detection problems for com-
binational logic circuits,” IEEE Transactions on Computers, vol. 31, pp. 555-560,
June 1982.

S. Chandraand J. H. Patel, “Test generation in a parallel processing environment,”
in Digest of Papers, International Conference on Computer Design, pp. 11-14,
Oct. 1988.

S. Patil and P. Banerjee, “Fault partitioning issues in an integrated parallel test gen-
eration fault simulation environment,” in Proceedings of the | EEE International Test
Conference, Washington, D.C., pp. 718-727, Aug. 1989.

S. Patil and P. Banerjee, “Performance trade-offs in a parallel test generation fault
simulation environment,” |EEE Transactions on Computer Aided Design, vol. 10,
pp. 1542—1558, Dec. 1991.

S. Patil, P. Banerjee, and J. Patel, “Parallel test generation for sequentia circuits on
general-purpose multiprocessors,” in Proceedings of the Design Automation Confer-
ence, June 1991.

P. Agrawal, V. D. Agrawal, and J. Villoldo, “Sequentia circuit test generation
on a distributed system,” in Proceedings of the Design Automation Conference,
June 1993.

G. J. Li and B. W. Wah, “MANIP-2: A multicomputer architecture for evaluating
logic programs,” in Proceedings of the International Conference on Parallel Pro-
cessing, pp. 123-130, Aug. 1985.

B. W. Wah, G. J. Li, and C. F. Yu, “Multiprocessing of combinatoria search prob-
lems,” |IEEE Computer, vol. 18, pp. 93-108, June 1985.

V. N. Rao and V. Kumar, “Parallel depth first search, part I: Implementation,” Inter-
national Journal of Parallel Processing, vol. 16, no. 6, 1987.

V. N. Rao and V. Kumar, “Parallel depth first search, part 11: Analysis,” International
Journal of Parallel Processing, vol. 16, no. 6, 1987.

A. Motohara, K. Nishimura, H. Fujiwara, and |. Shirakawa, “A paralel scheme for
test-pattern generation,” in Digest of Paper s, Inter national Conference on Computer-
Aided Design, pp. 156159, Nov. 1986.

S. Patil and P. Banerjee, “A paralle branch and bound approach to test generation,”
in Proceedings of the Design Automation Conference, Las Vegas, NV, pp. 339-345,
June 1989.

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

159

S. Patil and P. Banerjee, “ A parallel branch and bound algorithm for test generation,”
|EEE Transactions on Computer Aided Design, vol. 9, pp. 313-322, Mar. 1990.

S. Arvindam, V. Kumar, V. N. Rao, and V. Singh, “ Automatic test pattern generation
on parallel processors,” Department of Computer Science, University of Minnesota,
Minneapolis, MN, Tech. Rep. TR-90-29, May 1990.

B. Ramkumar and P. Banerjee, “Portable parallel test generation for sequential cir-
cuits,” in Digest of Papers, International Conference on Computer-Aided Design,
pp. 220223, Nov. 1992.

J. S. Conery, “The AND/OR process model for parallel interpretation of logic pro-
grams,” Ph.D. dissertation, University of California, Irvine, CA, June 1983.

S. Patil, “Parallel algorithmsfor test generation and fault ssmulation,” Ph.D. disser-
tation, University of Illinois, Urbana, IL, Sept. 1990.

S. T. Patel and J. H. Patel, “Effectiveness of heuristics measures for automatic
test pattern generation,” in Proceedings of the Design Automation Conference,
pp. 547-552, 1986.

S. J. Chandra and J. H. Patel, “Experimenta evaluation of testability measures for
test generation,” |EEE Transactions on Computer Aided Design, vol. 8, pp. 93-97,
Jan. 1989.

R. H. Bdl, J., R. H. Klenke, J. H. Aylor, and R. D. Williams, “Results of atopolog-
ically partitioned parallel automatic test pattern generation system on a distributed-
memory multiprocessor,” in ASC 92, Sept. 1992.

T. M. Niermann, “Techniques for sequentia circuit automatic test generation,”
Ph.D. dissertation, University of Illinois, Urbana, IL, Mar. 1991.

E. G. Ulrich and T. Baker, “Concurrent ssmulation of nearly identical digital net-
works,” |EEE Computer, vol. 7, pp. 39-44, Apr. 1974.

D. B. Armstrong, “A deductive method for ssimulating faultsin logic circuits,” |IEEE
Transactions on Computers, vol. 21, pp. 462471, May 1972.

W.-T. Chengand M.-L. Yu, “ Differential fault simulation— afast method using min-
ima memory,” in Proceedings of the 26th ACM/IEEE Design Automation Confer-
ence, pp. 424-428, June 1989.

S. Seshu, “On an improved diagnosis program,” |EEE Transactions on Electronic
Computers, vol. 14, pp. 76-79, 1965.

T. M. Niermann, W.-T. Cheng, and J. H. Patel, “PROOFS: A fast, memory efficient
sequentia circuit fault simulator,” IEEE Transactions on Computer Aided Design,
pp. 198207, 1992.

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

160

P. Banerjee, Paralld Algorithms for VLS Computer-Aided Design. Englewood
Cliffs, NJ PTR Prentice Hall, 1994.

P. A. Duba, R. K. Roy, J. A. Abraham, and W. A. Rogers, “Fault simulationin adis-
tributed environment,” in Proceedings of the 25th ACM/IEEE Design Automation
Conference, pp. 686691, June 1988.

W. A. Rogers and J. A. Abraham, “CHIEFS: A concurrent hierarchical and exsten-
sible fault ssimulator,” in Proceedings of the IEEE International Test Conference,
pp. 710-716, 1985.

T. Markas, M. Royals, and N. Kanopoulos, “On distributed fault simulation,” IEEE
Computer, val. 7, pp. 40-52, Jan. 1990.

L. Soule and T. Blank, “Parallel logic simulation on general purpose machines,” in
Proceedings of the 25th ACM/IEEE Design Automation Conference, pp. 166-171,
June 1988.

R. B. Muéller-Thuns, D. G. Saab, R. F. Damiano, and J. A. Abraham, “Portable par-
alel logic and fault simulation,” in Digest of Papers, International Conference on
Computer-Aided Design, pp. 506-509, Nov. 1989.

J. F. Nelson, “ Deductivefault ssmul ation on hypercube multiprocessors,” in Proceed-
ings of the 9th AT& T Conference on Electronic Testing, Oct. 1987.

S. Ghosh, “NODIFS: A novel, distributed circuit partitioning based algorithm for
fault smulation of combinational and sequential digital designs on loosely cou-
pled parallel processors,” LEMS, Division of Engineering, Brown University, Prov-
idence, RI, Tech. Rep., 1991.

S. Patil, P. Banerjee, and J. Patel, “Parallel test generation for sequentia circuits on
general purpose multiprocessors,” in Proceedings of the 28th ACM/IEEE Design Au-
tomation Conference, San Fransisco, CA, June 1991.

S. P. Smith, W. Underwood, and M. R. Mercer, “An analysis of several approachesto
circuit partitioning for parallel logic ssmulation,” in Proceedings of the Inter national
Conference on Computer Design, pp. 664—667, 1987.

C.-P. Kung and C.-S. Lin, “Parale sequence fault ssmulation for synchronous se-
guentia circuits,” Proceedings of the European Design Automation Conference,
pp. 434438, Mar. 1992.

E. P Markatos and T. J. LeBlanc, “Using processor affinity in loop scheduling on
shared-memory multiprocessors,” |EEE Transactions on Parallel and Distributed
Systems, pp. 200211, Apr. 1994.

161

[147] O.PlataandF. F. Rivera, “ Classes versus prototypesin object-oriented languages,” in
Conference Proceedings of the 1994 International Conference on Supercomputing,
pp. 186-194, July 1994.

162

VITA

Steven Michael Parkes attended the University of California, Davis, and received the
B.S. and M.S. degrees in Electrical Engineering in 1982 and 1989, respectively. 1n 1983,
Parkes joined the Grass Valley Group, Nevada City, California, where he was responsible
for hardware and software design of production digital video equipment. In 1987, Parkes
enrolled in the University of Illinois at Urbana-Champaign; he received the Ph.D. in 1994.

Parkes hasreceived fellowshipsfrom the |EEE, Motorol a, the Regents of the University
of California, Digital Equipment Corporation, and the National Science Foundation. His
Ph.D. research was supported by the Semiconductor Research Corporation. He has con-
sulted for Xerox and the Grass Valley Group. Heis active in parallel and distributed com-
puting, object-oriented and modern programming languages, and CAD.

Parkes is founder and president of Sierra Vista Research, which was founded in 1993
to devel op object-oriented environments for concurrent computing. He currently residesin
Los Gatos, California.

