
 Copyright by Steven Michael Parkes, 1994

A CLASS LIBRARY APPROACH TO
CONCURRENT OBJECT-ORIENTED PROGRAMMING

WITH APPLICATIONS TO VLSI CAD

BY

STEVEN MICHAEL PARKES

B.S., University of California, Davis, 1982
M.S., University of California, Davis, 1989

THESIS

Submitted in partial fulfillment of the requirements
for the the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

A CLASS LIBRARY APPROACH TO
CONCURRENT OBJECT-ORIENTED PROGRAMMING

WITH APPLICATIONS TO VLSI CAD

Steven Michael Parkes, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1994

Prithviraj Banerjee, Advisor

Despite increasing availability, the use of parallel platforms in the solution of signifi-

cant computing problems remains largely restricted to a set of well-structured, numeric ap-

plications. This is due in part to the difficulty of parallel application development, which

is itself largely the result of a lack of high-level development environments applicable to

the majority of extant parallel architectures. This thesis addresses the issue of facilitating

the application of parallel platforms to unstructured problems through the use of object-

oriented design techniques and the actor model of concurrent computation. We present a

multilevel approach to expressing parallelism for unstructured applications: a high-level in-

terface based on the actor and aggregate models of concurrent object-oriented programming,

and a low-level interface which provides an object-oriented interface to system services

across a wide range of diverse parallel architectures. The interfaces are manifested in the

ProperCAD II library, a C++ object library supporting actor concurrency on microprocessor-

based parallel architectures and appropriate for applications exhibiting medium-grain par-

allelism. The interface supports uniprocessors, shared memory multiprocessors, distributed

memory multicomputers, and hybrid architectures comprising network-connected clusters

of uni- and multiprocessors. The library currently supports workstations from Sun, shared

memory multiprocessors from Sun and Encore, distributed memory multicomputers from

Intel and Thinking Machines, and hybrid architectures comprising IP network-connected

clusters of Sun uni- and multiprocessors. We demonstrate our approach through an exami-

nation of the parallelization process for two existing unstructured serial applications drawn

from the field of VLSI computer-aided design. We compare and contrast the library-based

actor approach to other methods for expressing parallelism in C++.

iii

A CLASS LIBRARY APPROACH TO
CONCURRENT OBJECT-ORIENTED PROGRAMMING

WITH APPLICATIONS TO VLSI CAD

Steven Michael Parkes, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1994

Prithviraj Banerjee, Advisor

Despite increasing availability, the use of parallel platforms in the solution of signifi-

cant computing problems remains largely restricted to a set of well-structured, numeric ap-

plications. This is due in part to the difficulty of parallel application development, which

is itself largely the result of a lack of high-level development environments applicable to

the majority of extant parallel architectures. This thesis addresses the issue of facilitating

the application of parallel platforms to unstructured problems through the use of object-

oriented design techniques and the actor model of concurrent computation. We present a

multilevel approach to expressing parallelism for unstructured applications: a high-level in-

terface based on the actor and aggregate models of concurrent object-oriented programming,

and a low-level interface which provides an object-oriented interface to system services

across a wide range of diverse parallel architectures. The interfaces are manifested in the

ProperCAD II library, a C++ object library supporting actor concurrency on microprocessor-

based parallel architectures and appropriate for applications exhibiting medium-grain par-

allelism. The interface supports uniprocessors, shared memory multiprocessors, distributed

memory multicomputers, and hybrid architectures comprising network-connected clusters

of uni- and multiprocessors. The library currently supports workstations from Sun, shared

memory multiprocessors from Sun and Encore, distributed memory multicomputers from

Intel and Thinking Machines, and hybrid architectures comprising IP network-connected

clusters of Sun uni- and multiprocessors. We demonstrate our approach through an exami-

nation of the parallelization process for two existing unstructured serial applications drawn

from the field of VLSI computer-aided design. We compare and contrast the library-based

actor approach to other methods for expressing parallelism in C++.

iv

DEDICATION

To my parents, Dayle and Genie

v

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Prithviraj Banerjee, for supporting and di-

recting this work. I would like to thank the members of my committee, Professors Agha,

Chien, Hwu, Patel, and Polychronopoulos, for their efforts in reviewing and critiquing my

progress and this thesis.

I would like to express my thanks to the members of the ProperCAD and Paradigm

projects for both their technical help in issues of parallel computing and their camaraderie. I

would especially like to thank John Chandy, my officemate, who not only served as a source

of insight and a sounding board for ideas but also developed several large applications on

the ProperCAD II library with virtually no documentation.

I would like to thank the members, both present and former, of the Center for Reliable

and High Performance Computing. Special thanks are due to Ken Kubiak for technical in-

sight, encouragement, and empathy.

I owe a great debt to my parents, Dayle and Genie, and my siblings, Cheryl, Chris, and

Debbie, for their invaluable love, encouragement, and understanding during my doctoral

degree program.

This work was supported in part by the Semiconductor Research Foundation. The Ar-

gonne National Laboratory, the San Diego Supercomputer Center, and the National Center

for Supercomputer Applications provided support by providing access to their computing

resources.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION ��� 1
1.1 Computer-Aided Design for VLSI ��� 2
1.2 A Class Library for Concurrent Object-Oriented Programming ����������� 5
1.3 Summary of Contributions ��� 6
1.4 Overview ��� 6

2 CONCURRENT OBJECT-ORIENTED PROGRAMMING ����������������� 8
2.1 Hardware Architectures ��� 9
2.2 High-level Programming Models ��� 11
2.3 Implementation Architectures ��� 16
2.4 Composability ��� 22
2.5 A Class Library Approach ��� 24
2.6 Other Models and Implementations ��������������������������������������� 25

3 THE ACTOR INTERFACE ��� 30
3.1 Actors and Continuation Passing Style ������������������������������������� 30
3.2 Concurrent Objects ��� 32
3.3 Concurrent Collections ��� 41
3.4 Performance ��� 44
3.5 Evaluation ��� 47
3.6 Other Actor Models and Implementations ��������������������������������� 51

4 ABSTRACT PARALLEL ARCHITECTURE ������������������������������� 56
4.1 Thread Management ��� 56
4.2 Resource Management ��� 64
4.3 Communication Management ��� 69
4.4 Configuration Management ��� 72
4.5 Performance ��� 76
4.6 Evaluation ��� 78
4.7 Other Models and Implementations ��������������������������������������� 82

vii

5 META-PROGRAMMABILITY ��� 85
5.1 Local Meta-programmability ��� 85
5.2 Global Meta-programmability ��� 95
5.3 Evaluation ��� 99
5.4 Other Models and Implementations ��������������������������������������� 100

6 PARALLEL TEST GENERATION ��� 102
6.1 Test Pattern Generation ��� 103
6.2 HITEC: A Serial Test Generator ��� 104
6.3 Approaches to Parallel Test Generation ����������������������������������� 107
6.4 Parallel Test Generation using Actor Parallelism ��������������������������� 109
6.5 ProperHITEC ��� 112
6.6 Performance ��� 115
6.7 Evaluation ��� 118

7 PARALLEL FAULT SIMULATION ��� 122
7.1 Fault Simulation ��� 123
7.2 PROOFS: A Serial Fault Simulator ��� 125
7.3 Approaches to Parallel Fault Simulation ����������������������������������� 126
7.4 Parallel Fault Simulation Using Actor Parallelism ������������������������� 129
7.5 ProperPROOFS ��� 134
7.6 Performance ��� 136
7.7 Evaluation ��� 141

8 CONCLUSIONS ��� 148

REFERENCES ��� 150

VITA ��� 162

viii

LIST OF TABLES

Table Page

3.1 Costs of actor primitives ��� 45

4.1 Round-trip latency for IP message passing ������������������������������������� 77
4.2 Bandwidth for IP message passing ��� 77
4.3 APA triples for various machines ��� 79
4.4 Lines of code in APA ��� 79

6.1 Classes in HITEC ��� 107
6.2 ProperHITEC results on Sun 4/670MP ������������������������������������� 115
6.3 ProperHITEC results on Intel iPSC/860 ������������������������������������� 116
6.4 ProperHITEC results on Encore Multimax ��������������������������������� 116
6.5 ProperHITEC results on clusters ��� 117
6.6 Increased efficiency in ProperHITEC ��������������������������������������� 117
6.7 Comparison of ProperHITEC and ProperTEST on iPSC/860 ������������� 118
6.8 Comparison of software metrics for HITEC and ProperHITEC ������������� 119
6.9 ActorMethods for each class in ProperHITEC ��������������������������� 120
6.10 Member functions in HITEC and ProperHITEC ��������������������������� 120
6.11 New virtual members in HITEC ��� 121

7.1 Run time and speedup for static fault distribution on the iPSC/860 ����������� 130
7.2 Time (ms) of fault simulation operations ��������������������������������������� 134
7.3 ProperPROOFS results on Intel iPSC/860: random vectors ����������������� 137
7.4 ProperPROOFS results on Intel Paragon: random vectors ������������������� 138
7.5 ProperPROOFS results on Sun 4/670MP: random vectors ������������������� 139
7.6 ProperPROOFS results on Intel iPSC/860: STG vectors ��������������������� 140
7.7 ProperPROOFS results on Intel Paragon: STG vectors ��������������������� 141
7.8 ProperPROOFS results on Sun 4/670MP: STG vectors ��������������������� 142
7.9 Good and faulty simulation of s35932 on Paragon ����������������������������� 143
7.10 Comparison of static and dynamic fault distribution on iPSC/860 ������������� 144
7.11 Comparison of software metrics for PROOFS and ProperPROOFS ��������� 147
7.12 ActorMethods for each class in ProperPROOFS ������������������������� 147
7.13 Member functions in PROOFS and ProperPROOFS ������������������������� 147

ix

LIST OF FIGURES

Figure Page

1.1 An overview of the ProperCAD project ��������������������������������������� 5

2.1 Shared memory multiprocessor ��� 10
2.2 Distributed memory multiprocessor ��� 10
2.3 Hybrid multiprocessor ��� 12
2.4 Communication and consistency in shared memory ��������������������������� 13
2.5 Communication on distributed memory architectures ������������������������� 14
2.6 Spectrum of parallelism ��� 20
2.7 Composability in send-receive and actor models ������������������������������� 23

3.1 Actor operations ��� 31
3.2 RPC and Actors/CPS ��� 31
3.3 Implementations of a concurrent array ��� 41

4.1 APA thread management classes ��� 57
4.2 Use of ThreadManager class ��� 63
4.3 APA free store management classes ��� 65
4.4 Reservoir size mapping ��� 68
4.5 Datagram layout ��� 69
4.6 APA dimensions ��� 81

5.1 Task queues ��� 87
5.2 Priority class hierarchy for ATPG ��� 88
5.3 Heterogeneous lexicographic priorities ��������������������������������������� 88
5.4 Call by value and first class values ��� 91

6.1 HITEC/PROOFS organization ��� 106
6.2 Parallelism in ProperHITEC ��� 110
6.3 ProperHITEC organization ��� 113

7.1 Fault simulation table model ��� 123
7.2 Concurrent and deductive fault simulation ����������������������������������� 124
7.3 Differential fault simulation ��� 124
7.4 Bit-parallel fault simulation ��� 125

x

7.5 PROOFS organization ��� 127
7.6 Split request in fault redistribution ��� 131
7.7 Forwarding of split requests ��� 133
7.8 ProperPROOFS organization ��� 134

xi

LIST OF INTERFACES

Interface Page

3.1 class Actor ��� 33
3.2 class ActorName ��� 35
3.3 class Continuation ��� 37
3.4 class Continuation<Type> ��� 40
3.5 class Aggregate ��� 42
3.6 class AggregateName ��� 43

4.1 class Thread ��� 58
4.2 class Process ��� 59
4.3 class ProcessGroup ��� 60
4.4 class Cluster ��� 61
4.5 class ThreadManager ��� 62
4.6 class FreeStore ��� 65
4.7 class PageTable ��� 66
4.8 class Reservoir ��� 67
4.9 class Datagram ��� 70
4.10 class Semaphore ��� 71
4.11 class Machine ��� 72
4.12 class Network ��� 74

5.1 class TaskQueue ��� 87
5.2 class Priority ��� 89
5.3 class PriorityComparator ��� 89
5.4 class Value ��� 91
5.5 class Distribution ��� 93
5.6 class Director ��� 97

1

Chapter 1

INTRODUCTION

The desire to utilize multiple processors to solve significant computing problems has, to

date, been largely unattainable for all but a set of restricted problems, namely the numerical

problems found in scientific applications and the database problems found in transaction-

processing applications. While substantial computing problems exist in other fields, the

techniques and implementations used in the parallelization of scientific and transaction-processing

applications have not proven similarly effective on unstructured problems. The lack of struc-

ture in these classes of problems de-emphasizes floating point vector operations while it

emphasizes operations that comprise a mixture of integer and floating point instructions on

pointer-based data structures. Existing parallelization methods, both manual and automatic,

often fail on this class of application to achieve results comparable to those on numeric and

structured applications.

With increasing interest in the parallelization of a larger set of applications comes a shift

in the way in which parallelization is approached. For example, many classical parallel ap-

plications have been developed to solve specific research problems; these efforts were often

targeted toward specific architectures—those available to the researchers. Because the re-

sult of the research was the knowledge gained by solving a particular problem and not a

parallel application, the dependence on a particular architecture was not considered a sig-

nificant drawback.

In contrast, as parallel machines have proliferated, a broader range of application design-

ers has been attracted. For these designers, the lack of a dominant architecture or particu-

lar machine engenders the need to pursue an architecture-independent solution to archive a

cost-effective solution. Moreover, a significant degree of new interest in scalable platforms

is coming from vendors of existing serial applications. As a result, there is need for paral-

lelization methods that can be incrementally applied to existing code. Finally, because the

2

cost of developing parallel software is inherently greater than that of developing serial soft-

ware, the recent interest in code reuse is at least as strong in parallel processing as it is in

serial processing.

Technologies from concurrent object-oriented programming can be used to address each

of these issues. Abstract high-level models can be used to provide a degree of insulation

from architectural details. Encapsulation via well-defined interfaces can be used to facili-

tate modular development and code reuse. Inheritance and dynamic binding can be used to

facilitate incremental parallelization of existing serial object-oriented applications.

While these technologies exist in the field of concurrent object-oriented programming,

they take numerous diverse forms. Generating a cohesive interface that meets all application

needs is probably infeasible; not only do the requirements of different fields vary widely, the

evaluation of a ‘good’ interface often varies among individuals, even within the same field.

In this work, we present an interface for concurrent object-oriented programming that is

applicable to computer-aided design (CAD) applications for VLSI. To the extent that VLSI

CAD applications are characteristic of large C++ applications, the interface should also find

application in other domains. The interface is defined in terms of C++ classes and imple-

mented in the ProperCAD II class library. In the remainder of this chapter, we consider the

characteristics of VLSI CAD applications, briefly comment on how a class library can be

used to parallelize CAD applications, summarize the contributions of this research, and give

an overview of the chapters that follow.

1.1 Computer-Aided Design for VLSI

To design increasingly complex VLSI systems, continued—and in some cases radical—

progress is required in design technologies, especially the algorithms and applications for

VLSI CAD. CAD applications differ substantially from the scientific applications which

have traditionally formed the bulk of supercomputing workloads. CAD applications are

characterized by:

� long execution times, sometimes more than a week for individual runs on contempo-

rary uniprocessor platforms

� qualities of result which are directly dependent on the magnitude of computing re-

sources applied

� a direct correlation between application turnaround time and design cycle length

3

� multimegabyte data sets

� irregular, unstructured data organizations

� resistance to well-known parallelization techniques

Examples of VLSI CAD problems are test pattern generation, logic synthesis, circuit

extraction, and cell placement and routing.

Automatic test pattern generation (ATPG) for VLSI circuits is the process of generating

test patterns, sets of inputs to integrated circuits that are applied to fabricated devices to de-

termine if any defects occurred during manufacturing. Although the complexity of ATPG is

daunting—it is an NP-complete search problem—it is nonetheless considered indispensable

for maintaining the manufacturing quality of ever larger VLSI devices.

Logic synthesis comprises the creation and optimization of digital circuits represented

as netlists of logic and state elements. Because of increasing circuit densities, the last decade

has seen a considerable increase in interest in algorithms for the automatic synthesis of VLSI

circuits. There is industry consensus that only through synthesis will it be possible to man-

age the design complexity of the current and future generations of VLSI chips. Most syn-

thesis algorithms are both memory and processor intensive and display a quality of results

tightly coupled to the resources applied.

Circuit extraction is the process of taking a VLSI mask-level layout and extracting cir-

cuit connectivity and parametric values. The results of extraction are used to verify both

design correctness and performance requirements, usually after automatic placement and

routing. Extraction is typically performed on a circuit description provided in terms of rect-

angles on various mask layers. The number of rectangles is approaching 100 million in con-

temporary microprocessor designs; few platforms available in industry have the resources to

handle these designs efficiently. Given the frequency of use—extraction is iterated with de-

sign changes to verify changes and to update extracted parametric information—techniques

to take advantage of all available resources are invaluable.

When the logic design for a VLSI circuit has been completed, cell placement and routing

are performed. With chips approaching tens of millions of gates, the time required for this

process on large chips often exceeds days and is quickly approaching weeks on state-of-the-

art workstations. As in other CAD tasks, the quantity of resources applied to the problem

has a direct impact on the quality of results.

Even with the preponderance of evidence indicating that virtually any method of man-

aging the application development process and any technique for improving quality through

4

additional resources would appear promising, it is still the case that neither parallel process-

ing nor object-oriented techniques are well represented in the CAD development commu-

nity. This situation is not without justification for a number of reasons:

� For more than a decade, most CAD development has been performed in the C pro-

gramming language, and until the advent of C++, use of an object-oriented language

implied the sacrifice of existing code, an unacceptable alternative. Even with the avail-

ability of C++, adoption is slow; C++ is significantly more complicated than C and is

still undergoing rapid development. Development tools are only now attaining the

degree of stability required for even the most aggressive commercial development.

� Due to a lack of widely available libraries, much of the promise of code reuse asso-

ciated with object-oriented programming remains to be realized. Given the ability in

C++ to trade flexibility for efficiency, the process of generating reusable code is com-

plicated by the fact that the set of design choices, in terms of flexibility versus over-

head, for one application may not be acceptable for another; CAD problems, with

their inherent complexity and size, are known to be sensitive to overheads in area or

space.

� Until recently, the widespread availability to CAD users of parallel platforms has been

severely limited. Supercomputers have in general been limited to the restricted appli-

cation domains mentioned previously. The techniques developed for these platforms

have had no place for application in the CAD community. With little availability of

parallel platforms, interest in parallel solutions to CAD problems has been relatively

low. With only limited development of parallel applications, little impetus exists for

CAD users to explore the cost benefit trade-off of parallel platforms.

� The generation of efficient parallel algorithms has been impeded by concurrent rapid

improvements in serial algorithms. Often by the time a parallel CAD algorithm is

completed, it lags significantly behind the quality, and sometimes even the perfor-

mance, of contemporary serial algorithms. Given the high cost of developing new

applications, support for a parallel track of separate parallel tools which mirrors a set

of serial tools is prohibitive.

5

1.2 A Class Library for Concurrent Object-Oriented
Programming

Based on this past experience, a strong argument can be made that in order for a paral-

lelization environment to be applicable to VLSI CAD it must:

1. be architecture-independent, that is, portable across the majority of parallel machines

2. facilitate incremental parallelization, that is, enable parallel development that may be

viewed as a customization of a serial application rather than as an independent effort

3. be tightly integrated with the target language in order to minimize difficulties due to

a paradigm shift

These constraints are addressed in the approach taken in the ProperCAD project [1], un-

der which the work presented here was performed (Figure 1.1). The goal of the ProperCAD

project is the development of a library which provides a seamless, high-level programming

model across a variety of parallel architectures, along with a set of applications based on that

model that addresses the most significant tasks in electronic design automation [2, 3, 4].

In this research, we have developed an interface for concurrent object-oriented program-

ming defined in terms of C++ classes and implemented in the ProperCAD II library. The

interface consists of two major parts: a high-level interface representing a synthesis of the

Applications
ProperEXT Extraction
ProperTEST ATPG
ProperSYN Synthesis
ProperMIS Synthesis
ProperPLACE Placement

 ProperHITEC ATPG
ProperPROOFS Fault

Simulation
ProperCAD II Library

MIS-II
HITEC/PROOFS
TimberWolfSC

SYLON-XTRANS
PACE

. . .

Sun 600MP, SPARCstation 10, 20
Encore Multimax

INTEL iPSC Hypercubes
INTEL Paragon
Workstation Cluster
CM-5

Multicomputers Multiprocessors Hybrids

Abstract Parallel
Architecture

Actor Interface

Parallel
Application

Multiprocessor Cluster

Figure 1.1 An overview of the ProperCAD project

6

actor model of concurrent object-oriented programming with a statically typed imperative

language, C++, and a low-level abstract machine interface that can be used to parametrically

describe a wide variety of concrete architectures.

The development of the interface has been driven by and evaluated against two new par-

allel applications, parallel test pattern generation and parallel fault simulation, each incre-

mentally developed from an existing state-of-the-art serial application. In addition to pro-

viding a basis for evaluating the usability of the interface, these applications embody new

approaches to their target problems.

1.3 Summary of Contributions

The primary contributions of this thesis are:

1. A class library interface for actor-based parallelism in a statically typed language and

based on built-in type mechanisms.

2. An implementation of aggregates providing the functionality described in [5] with

additional meta-programmability features.

3. An interface supporting composable meta-programming of an actor system on con-

temporary microprocessor-based machines.

4. An open implementation supporting application-specific customization of the run time

support system.

5. An abstract parallel architectural model with a class library interface, capable of para-

metrically describing the majority of contemporary parallel architectures.

6. New parallel algorithms for test pattern generation and fault simulation incrementally

derived from state-of-the-art serial algorithms.

1.4 Overview

In Chapter 2, we review recent work in the field of concurrent object-oriented program-

ming and consider application of object-oriented programming techniques to unstructured

problems. Chapter 3 presents the primitives in the actor interface. In Chapter 4, we con-

sider a platform for implementation of the actor primitives, the abstract parallel architecture.

Chapter 5 presents extensions of the actor interface to support for meta-programmability.

7

Chapter 6 introduces test generation, an unstructured application drawn from the area of

VLSI CAD, and demonstrates how the interfaces developed in this work are used to paral-

lelize an existing serial test application. Chapter 7 presents the parallelization of fault simu-

lation by using the actor and aggregate models and reports an implementation based on the

ProperCAD II library. Chapter 8 summarizes our experiences parallelizing serial applica-

tions using the new interface, presents observations on the most significant success of the

interface, and proposes features that would extend the usability of the interface and imple-

mentation.

8

Chapter 2

CONCURRENT OBJECT-ORIENTED
PROGRAMMING

Concurrent computing is the use of multiple processors to solve a single problem. Con-

current machines have existed almost as long as computers themselves, yet the use of con-

currency to improve run times and results is still limited to a few specialized areas. This is

in large part due to the difficulty in producing concurrent programs that are both effective

in improving performance and manageable from a development perspective.

When creating concurrent programs, the programmer must deal with two competing is-

sues: expression of concurrency and control of the state interference caused by concurrency.

Expression of concurrency is the task of breaking a problem into multiple subproblems that

can be then processed concurrently. In this respect, a serial program is the degenerate case

of a concurrent program. If insufficient concurrency is expressed in a program, the effec-

tiveness of the program will be limited. A program with limited concurrency is not scal-

able, i.e., there is a bound on the number of processors which can be applied to the prob-

lem beyond which processor utilization falls dramatically. While limits in scalability argue

for highly concurrent programs, programs of this type have drawbacks as well. First, if a

highly concurrent program has a low ratio of computation to communication, it may fail to

achieve sufficient processor utilization. Second, when additional concurrency is expressed,

the issue of state interference arises. If two concurrent tasks reference data whose values

change as computation progresses, the likelihood of race conditions due to intertask inter-

ference rises. Thus, when a programmer expresses additional concurrency, he must at the

same time ensure that state interference does not invalidate the result of the program.

In concurrent object-oriented programming [6], the object model and object-oriented

programming primitives are used to address issues of expression of concurrency and man-

9

agement of interference. In this chapter, we broadly review hardware architectures, pro-

gramming models, and programming model implementations. We conclude the chapter

with a broad overview of the library interface developed in this work and presented in greater

detail in following chapters.

2.1 Hardware Architectures

Parallel architectures cover a broad range of implementations, from low concurrency

systems composed of as few as two processors to highly-concurrent systems with thousands

of processors. Concurrent architectures also vary in both the manner and efficiency of com-

munication, from systems with interprocessor bandwidths of hundreds of megabytes per

second and communication frequency on the order of a few instructions to systems with a

few megabytes per second bandwidth and communication latencies in milliseconds.

Traditionally, concurrent architectures could be cleanly divided into two classes, shared

memory architectures and distributed memory architectures. In recent years, distributed

shared memory (logically shared, physically distributed) architectures such as the Kendall

Square KSR-1 [7] have been introduced. Additionally, with the rapid increase in intercon-

nectivity via local- and wide-area networks, virtually all machines can now be considered

concurrent in as much as they support some form of message passing interconnection.

This section considers a few key characteristics of each of these architecture classes.

It should be noted that these are hardware architectures and do not necessarily reflect the

programming model as viewed by the application programmer. It is possible, via compil-

ers, run time libraries, and operating systems, to implement any of the application program-

ming models of the next section on any of the hardware architectures presented below. We

use the term low-level programming model to describe the model supported directly by the

hardware and high-level programming model to describe the model seen by applications.

High-level programming models are considered in Section 2.2.

2.1.1 Shared memory

Shared memory architectures are constructed from a number of processing and memory

modules which are connected via an interconnection network (Figure 2.1). In the first gener-

ation of shared memory machines, processing modules generally lacked memory other than

that represented by the registers in each CPU and the interconnection network was gener-

ally a bus. Both of these characteristics led to scaling problems. To improve performance,

10

Processor Processor Processor

Memory Memory Memory

Interconnection Network

Figure 2.1 Shared memory multiprocessor

local caches were added to each processor. While this addition drastically cuts the latency

of memory references it introduces problems of cache coherency. More advanced intercon-

nection networks have also been developed, including crossbar and multistage networks.

Even though the addition of cache mechanisms has enabled the scaling of shared memory

machines to larger sizes, the difficulty of maintaining cache coherence typically limits the

feasibility of this approach to tens of processors. It is the cache coherence of these models

that distinguishes them from other uniform address space models.

2.1.2 Distributed memory

In distributed memory architectures, each processing module consists of both a proces-

sor and local memory. Processor modules are interconnected by a network (Figure 2.2).

The most significant characteristics of distributed memory systems are the individual ad-

dress space of each processor and explicit access to the network via primitives such as send

and receive. The bandwidth of the network in these architectures has traditionally been

less than that of shared memory machines—often an order of magnitude less than those of

bus-based shared memory machines—and often varies among different pairs of processors.

However, as a result, these architectures are considered more scalable than shared mem-

Processor/
Memory

Interconnection Network

Processor/
Memory

Processor/
Memory

Figure 2.2 Distributed memory multiprocessor

11

ory architectures. Machines of this type have been built with thousands of processors. The

lower bandwidth of the network means that algorithms that perform well on shared memory

machines may perform poorly on distributed memory architectures, if a naı̈ve mapping of

shared memory reference to distributed memory communication primitive is used.

2.1.3 Distributed shared memory

In the last decade, a new architecture has been developed using techniques borrowed

from both the pure shared memory and pure distributed memory architectures. This archi-

tecture uses hardware components similar to those developed for purely distributed memory

to implement a low-level programming model that mirrors shared memory. Though an in-

terconnection network is used, the hardware does not support explicit send and receive

primitives. Instead, the low-level programming model is a uniform address space, and the

hardware detects accesses to nonlocal memory, sending the appropriate messages to gain

access to the necessary data. Consistency in these systems is usually maintained via a com-

bination of hardware and software in a mechanism called a directory [8]. Contemporary

machines in this class are nonuniform memory architecture (NUMA) machines such as the

Stanford DASH [8] and cache-only memory architecture (COMA) machines such as the

KSR-1 [7].

2.1.4 Hybrid shared and distributed memory

Hybrid architectures combine shared and distributed memory architectures without adopt-

ing a completely shared or distributed model. Some processors will share a uniform address

space; otherwise, communication requires explicit sends and receives (Figure 2.3).

With the recent concurrent growth in workstation clusters and desktop multiprocessors, hy-

brid machines are becoming ubiquitous. Furthermore, massively parallel processor (MPP)

manufactures are beginning to consider hybrid architectures for their machines; the Intel

Paragon supports configurations which have shared memory multiprocessors at each node

within the mesh interconnect [9].

2.2 High-level Programming Models

In this context, “high-level” indicates the programming model to which an application is

written; this may differ from the model used by the underlying operating system. The pro-

gramming model can be broken into two components, a communication model and a thread

12

Processor

Memory

Processor Processor

Shared Memory Subsystem

Memory Memory

Processor

Memory

Processor Processor

Shared Memory Subsystem

Memory Memory

Interconnection Network

Interconnection Network

Interconnection Network

Figure 2.3 Hybrid multiprocessor

model. Though a complete model requires aspects of both components, separate consid-

eration of the components helps clarify the issues while illustrating the space of complete

models. While only a few combinations are currently in use, almost any combination of

communication and thread models can form a new complete programming model. These

models are high-level and thus with proper software support could be implemented on any

of the hardware architectures described in the previous section, albeit possibly at higher cost

if the programming and hardware models are dissimilar.

2.2.1 Communication model

The communication model defines how the “threads” of a program coordinate data in-

terchange amongst themselves. Though we use the term ‘thread’ in this section, we defer

definition to Subsection 2.2.2. For the purposes of this subsection, threads may be consid-

ered an active execution environment (stack) that vies for processor time with other threads.

13

2.2.1.1 Shared memory

In the shared memory programming model, the application sees a single flat address

space. Communication is implicit, through access to shared variables. To fully support such

a model, a method of interprocessor synchronization is necessary, usually implemented at

the lowest level via atomic operations such as test-and-set or through higher-level ab-

stractions such as barriers. The exact semantics of synchronization, i.e., busy-wait versus

rescheduling, cannot be defined precisely without reference to a thread model.

Specifying the exact semantics of shared memory machines is complicated by the exis-

tence of different consistency models. With hardware support for caching and load/store re-

ordering, the most conservative model of shared data consistency, sequential consistency [10],

is prohibitively expensive. Thus, in addition to the uniform address space, a shared memory

model must explicitly define the aspects, both deterministic and nondeterministic, of access

to shared memory.

An example of shared memory communication is shown in Figure 2.4. In the figure,

two threads access two shared integer variables, a and b. Because the model specifies a

uniform address space, the variables exist at the same addresses in both threads. The figure

demonstrates the consistency problem. While the first thread stores five into a followed by

storing ten into b, it is possible, under existing consistency models, for the second thread to

see the change to b before seeing the change to a.

a = 5;

b = 10;

Thread 1

c = b;

d = a;

Thread 2

Before:
a = 1; b = 2; c = 3; d = 4;

After: one of
a = 5; b = 10; c = 10; d = 5;

a = 5; b = 10; c = 10; d = 1;

a = 5; b = 10; c = 2; d = 5;

a = 5; b = 10; c = 2; d = 1;

Figure 2.4 Communication and consistency in shared memory

14

2.2.1.2 Distributed memory

In the distributed memory model, a send primitive is used to send data from one thread

to another thread. An explicitreceive operation must be executed before the data is avail-

able to the receiving thread. Figure 2.5 shows two possible ways communication can occur

in a distributed memory model. In the blocking case, the send operation does not complete

until the corresponding receive operation has begun. This style of communication is one

of the types supported by the Thinking Machines CM-5 CMMD library [11]. In the non-

blocking case, the send operation completes when the necessary data are copied out of the

application buffer; it is not necessary that the corresponding receive be executed. This

type of communication is common on Intel multicomputers [12]. Variations on communi-

cations primitives provide for broadcasting, multicasting, synchronous and asynchronous

communication, and typed messages.

2.2.2 Thread models

There are two principal thread models, physical and virtual.

2.2.2.1 Physical threads

In a physical thread model, the thread, as seen by the application, is a processing ele-

ment and is generally available for “exclusive” use by the application; if the code running

on a thread executes a blocking call, the entire thread is blocked for the duration of the call.

The physical model includes those systems which provide more threads than processors but

for which the application cannot rely on the ability of the underlying run time library to ef-

ficiently handle a number of threads vastly greater than the number of available processors.

Thread 1 Thread 2

send receive

time
Blocking Non-blocking

Thread 1 Thread 2

send receive

Figure 2.5 Communication on distributed memory architectures

15

2.2.2.2 Virtual threads

In a virtual thread model, the number of threads visible to the program is typically not

related to the number of processing elements. Applications developers think in terms of a

number of threads convenient for the application at hand. It is the responsibility of the un-

derlying language and run time support to map these virtual threads to physical processors.

When a virtual thread blocks, it is expected that the underlying run time support will find

another virtual thread to schedule. This model is often referred to as light-weight threads.

2.2.3 Complete models

A complete model is created by combining a communication model with a thread model

and then specifying the semantics of the interaction between the two components. We con-

sider three complete high-level models; many more are possible, but the examples serve to

demonstrate the issues involved.

2.2.3.1 Unix shared memory multiprocessor

The model generally found on Unix shared memory machines combines shared memory

communication and physical thread components. The underlying consistency model is that

of the underlying hardware and varies from architecture to architecture. The model is con-

sidered physically threaded, because Unix operating systems—in particular, the scheduler—

typically do not perform well when the number of kernel-scheduled threads is far greater

than the number of processors, e.g., 100 times or more.

2.2.3.2 MPI

The Message Passing Interface (MPI) is a send-receive model recently standardized by

a consortium of manufactures and users [13]. The model is similar to the programming in-

terfaces on the Intel iPSC and Paragon multicomputers and those supplied by libraries such

as PVM [14] and Express [15].

The basic model provides a send-receive interface atop a physically threaded model.

Programs written for this model are written for a fixed number of processors. While they

can be parameterized by the size of the machine, the model provides little or no support for

context switching of a physical thread over multiple virtual threads.

16

In MPI, the basic send-receive model is augmented with such concepts as process groups

and environments, which makes the interface more applicable to virtual threads. Experience

with this advanced virtual thread interface on distributed memory systems is limited.

2.2.3.3 Actors

The actor model is based on continuation passing [16] using virtual threads. From the

application viewpoint, an actor is an object with its own thread of control that at most times

is blocked waiting for a message—a continuation execution of one of its methods.

Continuation passing resembles message passing but omits the explicit receive opera-

tion. Instead, each message sent contains enough information to determine the action to be

invoked by the receiver. In this way, the model is similar to active messages [17].

The actor model combines continuation passing with a virtual thread model. Most of

the time, the thread associated with an actor is blocked awaiting the continuation execution

of one of its methods. When a continuation destined for the actor is executed, the appro-

priate member function is executed. As part of the execution, the actor may execute other

continuations, create new actors, or perform computations, possibly with side effects.

In a parallel context, continuations express parallelism; the call to a continuation returns

after scheduling the future execution of the continuation body rather than synchronizing

with the actual execution. Since every actor has a thread and an actor is simply a concur-

rent object, actor programs typically have thousands, if not hundreds of thousands, of virtual

threads. Thus, the virtual thread mechanism used by an actor implementation must be effi-

cient.

As the actor model is the model adopted in this work, further discussion and examples

are deferred until discussion of the Actor Interface in Chapter 3.

2.3 Implementation Architectures

Many of the choices made in the development of the characteristics of the interface in

this work involved consideration of what developers of the applications in the targeted fields

would need and like. A study of these issues is presented by Pancake et al. [18], [19]; while

their work was centered on scientific problems, with a few exceptions their observations

and conclusions are equally applicable to other problem domains. We borrow from their

discussion, as we consider the characteristics desirable in VLSI CAD and similar domains.

17

2.3.1 Algorithm classifications

2.3.1.1 Regular versus irregular

Regular applications are those whose computation demonstrates a regular pattern, i.e.,

the iteration of a large number of operations on large contiguous regions of memory with

little change in control flow or memory access patterns. Examples are signal processing

applications which compute fast Fourier transforms and other transforms on dense arrays

of raw data.

In contrast, irregular problems do not deal with dense contiguous data structures. This

class includes not only algorithms defined on completely arbitrary data structures but also

algorithms which have a high degree of conceptual regularity but a low degree of regularity

in implementation. Among this later class are sparse matrix operations; while the multipli-

cation of two sparse matrices is at a high level a regular operation, in terms of low-level

operations, control and data access patterns differ significantly from that of the analogous

dense operation. Typically, the metric used to differentiate regular from irregular is the ap-

plicability of vector operations.

2.3.1.2 Structured versus unstructured

For our purposes, we define unstructured problems as those that are not naturally ex-

pressible as operations on (possibly sparse) vectors and matrices or through iterative solu-

tion of a number of conceptually identical problems. Thus, while a sparse matrix operation

is not a regular operation, it is highly structured; the operation can be succinctly described

as a simple iteration over two graphs.

In contrast, unstructured problems are those for which a number of heterogeneous tasks

must be performed. For example, in a CAD application, it may be necessary to concurrently

process cost estimation tasks, database update tasks, and global status coherence tasks. The

number of unstructured problems implemented only on uniprocessor is large; the area of

CAD for VLSI circuits is dominated by such applications.

2.3.1.3 Numeric versus non-numeric

Traditionally concurrent processing has been applied to predominately numeric appli-

cations. For example, physical modeling tasks are well represented in current parallel pro-

cessing applications. These applications tend to be dominated by floating point operations

on data representing physical quantities.

18

While there are a number of problems involving physical modeling in the domain of

VLSI CAD, the area is dominated by applications for which floating point operations do not

predominate. These applications, such as logic synthesis, test generation, and logic simula-

tion, are tightly tied to the logic model of digital circuits and tend to be dominated by integer

and logic instructions.

2.3.1.4 Fine-grain versus medium-grain versus coarse-grain

The granularity of a parallel algorithm refers to the relative ratio of computation to com-

mutation. A fine-grain application expresses far more concurrency and utilizes far more

communication than a medium-grain application. It is difficult to affix a label to any partic-

ular algorithm, since these terms are largely relative. We choose to describe our approach

as applicable to medium-grain concurrency and to describe the most useful distinctions be-

tween fine- and coarse-grain without reference to instruction counts.

Fine-grain applications are those for which virtually every operation is concurrent. This

concurrency may be implied by data distribution as in a data parallel context or by implicit

concurrency in all operations as in the actor model.

We consider coarse-grain parallel algorithms to be those which either limit the number of

effectively processed concurrent tasks to the number of physical processors in the machine

or for which the communications protocol implies crossing a protection boundary. Thus,

an algorithm that is coarse-grained generally is written explicitly in terms of the size of the

machine, i.e., it is physically threaded, or expects intervention in communication as is the

case for distributed processing via remote procedure calls (RPCs) [20].

Essentially, applications which do not fit either of the previous two categories may be

considered medium-grain, and thus many systems can be considered medium grain. The

predominant characteristics of medium grain would then be:

� existence of a mixture of concurrent and nonconcurrent objects with concern for ef-

ficiency as the number of concurrent objects grows.

� an assumption of efficiency in communication, i.e., when possible, communication

among concurrent tasks should be on the order of a function call in a serial language.

19

2.3.2 Interface levels

2.3.2.1 Low-level

A low-level model essentially reflects the underlying hardware with little or no abstrac-

tion. Such a model is clearly not architecture-independent.

2.3.2.2 High-level

A high-level model provides a degree of distance or abstraction from the underlying

hardware. A high-level model should be implementable across a range of architectures, al-

though with varying degrees of efficiency. While high-level models are conceptually very

attractive, they may suffer from greater overheads and may inhibit some kinds of optimiza-

tions.

2.3.2.3 Mixed-level

Because high-level interfaces either incur too much overhead or because a degree of

architectural tuning is required, many have been been augmented with low-level features,

which leads to a mixed-level interface. While mitigating the disadvantages of a purely high-

level model, a mixed model can become difficult to understand and manage [18].

2.3.2.4 Multiple levels

Rather than mixing high- and low-level features, two models can be provided, one high

and one low, with a well-defined interface. This combination of models should provide

greater flexibility than a purely high-level model while helping minimize the confusion re-

sulting from a single interface with arbitrarily mixed abstractions.

2.3.3 Expression of parallelism

One can view the gamut of parallelism as a one-dimensional space with extremes rep-

resenting completely serial and completely parallel programs. This situation is portrayed

graphically in Figure 2.6, where arrows indicate increasing programmer effort.

If we consider, for example, the MPI and actor programming styles, we see that they lie

on opposite ends of the parallelism spectrum. If we consider a send-receive code that sends

two messages from a thread A to a thread B, in the most straightforward, synchronous case,

parallelism is decreased by the imperative receive primitive:

20

Serial

Completely
Parallel

Actor Model

Send-Receive Model

Figure 2.6 Spectrum of parallelism

// Thread 1 // Thread 2
send(2, type1, data1); receive(type1, data1);
send(2, type2, data2); receive(type2, data2);

Even if the semantics of the application may allow the messages to be processed in any or-

der, the underlying model requires that the messages be received in the order sent, and the

serial nature of code execution implies that one receive must precede the other. Though

it is possible to express unordered reception via asynchronous send and receive prim-

itives, such code is significantly more difficult to write. Thus, the basic MPI interface is

represented at the left of the parallelism spectrum; the developer must apply more effort to

express greater parallelism.

In the actor model, message reception may occur as long as the actor is not processing a

prior message. In contrast to the MPI case above, the actor will receive whichever message

arrives at the actor thread first. There is, however, a dual of the MPI case; if there is a depen-

dence constraint on message processing, the actor must handle the case in which message

reception order is reversed. In this case, the actor must delay processing of the second mes-

sage until the first is received and processed. Thus, the actor model starts at the completely

parallel end of the spectrum and requires that the programmer apply more effort to express

less parallelism. The extreme amount of parallelism in an actor program can sometimes

lead to difficulty in programming. To remedy this problem, most actor languages include

constructs for shifting order maintenance from the programmer to the run time system. As

will be seen in Chapter 3, combing the actor model with an imperative language such as C++

also serves to simplify the expression of parallelism without putting an unacceptably large

burden on the developer.

2.3.4 Concurrency expression

There are a number of methods for expressing concurrency in wide use; among the most

popular are data parallelism, task parallelism, and actor parallelism.

21

2.3.4.1 Data parallelism

In data parallelism, parallelism is implicit in certain data structures, usually in arrays.

Operations on arrays implicitly imply parallelism; it is the responsibility of the compiler

and run time support to implement the parallelism. Data parallelism is most often applied

to dense arrays but also may be applied to sparse data structures.

2.3.4.2 Task parallelism

In task parallelism, parallelism is explicit, usually in the form of a parallel parfor or

dowhile construct or an imperative spawn. In these cases, the body of the loop or the

target of the spawn is performed concurrently with other parts of the computation. These

types of parallel expression imply a degree of linkage between concurrency and the lexical

structure of the program.

2.3.4.3 Actor parallelism

In actor parallelism, the unit of concurrency is the actor, which is also the unit of inter-

ference control. Concurrency in an actor program is implicit in the semantics of the actor

model. Interprocess communication is expressed via continuation execution, an extension

of the member function execution mechanism of serial object-oriented languages. There are

no imperative constructs for parallelization or synchronization similar to the parfor and

barrier primitives typically found in task parallelism.

2.3.5 Method of implementation

Pancake and Bergmark classify interfaces as concurrent languages, language extensions,

and run time libraries [18].

2.3.5.1 Languages

Language implementations provide the greatest flexibility but have the drawback of re-

quiring more effort in development and maintenance of implementation, higher costs in

training efforts, sacrifice of existing code, and inability to overcome inertia of existing us-

age. In the case of concurrent languages, a significant amount of effort can be required to

specify the syntax and semantics of serial portions of the language, which detracts from the

effort to address issues of concurrency.

22

2.3.5.2 Language extensions

Language extensions mitigate, but do not eliminate, the difficulties of language imple-

mentations. An extension of an existing language represents less flexibility in expression

but gains greater ability to utilize existing technologies in implementation. Training and

adoption difficulties are fewer than in the language cases, but they are still significant.

2.3.5.3 Libraries

Libraries provide the lowest startup costs, but they do so at the cost of least flexibility in

expression and often the most effort in expressing parallelism. On the other hand, libraries

provide the greatest ability to coexist with existing libraries and development tools.

2.4 Composability

Of particular interest in this work is the ease of composability, the process of taking two

existing modules for solving subproblems of a computation and combining them into a sin-

gle application to solve a more complicated problem. For example, an application might

require the use of a linear system solver and a matrix multiplication package. In this ex-

ample, the implementation and component packages are composable if it is possible to take

existing modules for the solver and multiplication tasks and use them, without modification,

to solve the appropriate subproblems.

In composability, physical thread-based models tend to fall short of the virtual tech-

niques because partitioning, usually static, of available processors is required. Designers

of distributed memory interfaces such as MPI are implementing ways of solving this prob-

lem, but as yet there are few examples of such features.

Implementations of the actor model, being based on a virtual thread model, implicitly

perform load balancing when a new actor is created. Thus, if an actor type exists for each

of the solver and multiplication problems, an actor can be created for each problem without

interfering with the other. It is the task of the run time system to load balance and schedule

the actors to take advantage of available processing elements.

Figure 2.7 shows the difference between typical message passing and actor implementa-

tions of the linear system solver and matrix multiplication problems. In the message passing

case, we assume that a procedure exists for each subproblem and that each procedure was

designed assuming full use of the parallel machine. Each of the two subproblems is solved

internally in parallel, but the two subproblems are sequentially ordered with barriers. In the

23

Solver

Sol

Barrier

MatMult

MM MM MM

Barrier

P0 P1 P2 P0 P1 P2

MatMult

MM MM MM

Send-Receive Actor

Barrier Barrier

Barrier

Sol Sol

Solver

Sol Sol Sol

Figure 2.7 Composability in send-receive and actor models

actor case, since each subproblem is represented by an actor, the two actors, and by exten-

sion, the subproblem actors, are created concurrently and are synchronized only when the

two operations are completed
�

which may result is higher processor efficiency.
�

The barriers shown in the actor example are abstract; though an actor model does not have blocking prim-
itives, the sequence of continuation executions can effectively creates barriers.

24

2.5 A Class Library Approach

In this work, we present an interface and implementation for scalable concurrent object-

oriented programming which is applicable to the irregular and unstructured problems of

which VLSI CAD problems are representative. This section presents the major character-

istics of the interface.

2.5.1 Scalability

The interface and implementation are applicable to a wide range of machines, from small

shared memory workstations, through workstation clusters, to massively parallel processors

(MPPs). By supporting small machines and workstation clusters as well as MPP architec-

tures, we are able to facilitate near-term use on existing workstation clusters while at the

same time enabling the exploration of the application of MPP architectures to CAD prob-

lems.

2.5.2 Seamlessness

The interface is uniform across all supported architectures, from workstations to MPPs.

This uniformity enables the exploration of concurrency using small machines and clusters

while at the same time providing a continuous migration path to MPP machines. Develop-

ment of CAD applications based on the environment allows experimentation across a wider

range of architectures than has previously been possible.

2.5.3 Multi-level abstraction

We have developed a multi-level abstraction based on two models. The high-level model,

the actor interface, is capable of expressing actor operations that are easily implemented on

virtually any machine, though at costs that will vary from architecture to architecture. The

actor interface itself is implemented via a well-defined low-level model, the abstract parallel

architecture, which captures details such as address space distribution while still unifying

other architecture and vendor-specific details. Use of the actor interface does not preclude

direct access to the abstract architecture interface. Furthermore, the actor interface has been

carefully augmented to express several of the most common architecture-dependent features

commonly used for data distribution.

25

2.5.4 Medium-grain parallelism

Because the high-level actor interface augments the native C++ interface, an application

designed has the ability to express serial computation using only native C++ constructs and

parallel computation via the library interface.

2.5.5 Class library interface and implementation

The interface, implemented as a library in the C++ programming language, enables the

continued use of existing development tools, e.g., compilers and debuggers. The use of the

C++ language enables migration from existing C and C++ codes that predominate in VLSI

CAD. The library approach has had the added benefit of forcing a tighter integration with

the serial language, a goal which is decidedly difficult to attain [18]. It also facilitates incre-

mental parallelism in two ways. First, the library approach described implies that a serial

program with no calls to the library is a degenerate library client. Incrementally greater par-

allelism is expressed by adding additional library primitives. Second, we implement paral-

lelism via derivation; in a very real sense, the parallel application is derived from the serial

application. By applying parallelism via derivation—the dynamic-binding mechanism in

C++—it is possible to share object code and to limit perturbation of the original serial code.

2.6 Other Models and Implementations

In this section, we survey and briefly compare the approaches represented in this work

to nonactor models and implementations. Other actor approaches are considered in Sec-

tion 3.6.

2.6.1 pC++

Gannon and Lee [21], [22], [23], [24] have developed pC++, an extension of C++ with

support for distributed data structures similar to FORTRAN D. The pC++ language provides

support for distributed collections, both array-based and tree-based, of arbitrary types and

with full support for the C++ mechanisms of derivation and dynamic-binding [21]. In their

data parallel model, a data structure, usually an array, is distributed across processors in a

regular manner. This type of expression is natural in scientific computing where many al-

gorithms are described as operations on arrays. It is difficult to hypothesize how one would

implement the unstructured applications in VLSI CAD on top of a data parallel model. The

26

difficulty of expressing these tasks in terms of data parallelism reinforces the necessity to

choose the correct tool for the correct problem.

2.6.2 CC++

Compositional C++, or CC++, proposed by Chandy and Kesselman [25] takes a task

parallelism approach to concurrency. Where in pC++, processor control is implicit in the

parallel data structures, in CC++, parallelism is achieved though par and parfor primi-

tives which cause code blocks to be performed concurrently in different processing threads.

CC++ also provides a number of synchronization primitives necessary for a thread-oriented

programming interface.

To express VLSI CAD applications in terms of task parallelism, applications are broken

into a number of similarly sized tasks. The greatest difficulty in applying this technique is

the necessity to guide the ordering of task execution; often parallel CAD algorithms are

sensitive to ordering of execution. Task parallelism generally does not provide a priority

mechanism. Furthermore, many task parallelism implementations are tuned for cases where

the degree of parallelism expressed is on the order of the number of threads in the machine.

In this situation, a master-slave model would often be required to maintain an ordered list

of tasks. This lightweight scheduling is implicit in the actor interface.

As is the case for data parallelism, there are problems for which task parallelism and

CC++ more closely match the most intuitive solution. In particular, while features such as

implicit barriers and futures can be expressed with continuations, such expression may be

cumbersome. Applications that rely heavily on these operations could be tedious to translate

to continuation passing style.

2.6.3 IC-C++

Recently, a variant of C++, Illinois Concert C++ or IC-C++, has been proposed as a method

for the expression of fine-grain concurrency in C++ [26]. IC-C++ is targeted at massively

parallel machines and applications with a high degree of concurrency. IC-C++ defines a

concurrent semantics for most C++ primitives and operations, which enables the easy ex-

pression of a high degree of concurrency. The work on IC-C++ borrows from the compiler

analysis technologies in the Concert system [27].

27

2.6.4 ES-Kit

The Experimental Systems Kernel, or ES-kit, of Leddy and Smith [28] is implemented

via modifications to an existing C++ compiler and as such tries to stay true to the spirit and

syntax of C++. In ES-kit, pointers are extended to represent a global namespace, and remote

execution is represented by the execution of a method call though a pointer to a nonlocal

address. Object distribution is either automatic or under program control via the C++ place-

ment syntax [29]. Parallelism in ES-kit is specified through the use of remote function calls

and futures [30]. The original target of the ES-Kit was special purpose hardware.

2.6.5 Amber

The Amber system [31], derived from Presto [32], is an extension of C++, via a prepro-

cessor and a supporting run time library, targeted specifically toward workstation clusters

running the Topaz operating system [33]. In Amber, the approach is to explicitly locate a

shared datum on a particular node and then to cluster Topaz threads on that node. When ac-

cess is made to a remote node, the run time system traps to the Amber kernel and the thread

of control is transferred to the processor on which the data value resides.

2.6.6 COOL

COOL, developed by Chandra, Gupta, and Hennessy [34], is also based on thread-explicit

extensions to C++, in this case targeted toward shared memory architectures in general and

toward the DASH architecture in particular. COOL provides a full range of classical syn-

chronization constructs. Of particular interest in COOL is the ability to represent the affinity

of different objects, which is necessary to achieve high processor utilization in DASH’s dis-

tributed shared memory architecture.

2.6.7 Linda

Linda, developed by Carriero and Gelernter [35], [36], represents a high-level approach

to concurrent processing. In Linda, shared data are represented by a shared tuple-space to

which all functions have access. Elements in the tuple-space are lists of values. Access

to the space is via pattern matching on one or more elements of a tuple. This formulation

has particular benefit in logic-programming and artificial intelligence and was one of the

motivations for the development of ActorSpaces [37], [38], an extension to the actor model.

28

Linda has been applied to coarse-grain VLSI applications [39] and implemented on a

number of architectures [39], [40], including an implementation that runs atop PVM [14]

and thus runs on any cluster of machines supported by PVM [41].

Linda was specifically designed as a coordination language to be added to a computa-

tion language [35], which is both an advantage and a disadvantage. While it allows easy

separation of control flow from data flow, this separation violates the object model and thus

limits application in object-oriented environments.

2.6.8 Concurrent C++

Concurrent C++, developed by Gehani and Roome [42], [43], is another extension of

C++. In Concurrent C++, processes communicate via transactions that can be either block-

ing or nonblocking. Process bodies in Concurrent C++ are represented by functions, gener-

ally with an infinite loop representing the way the process handles events. Concurrent C++

has been implemented on uniprocessors, workstation clusters, and shared memory multi-

processors [43].

2.6.9 Jade

Jade is a high-level language for coarse-grain concurrency [44]. Jade uses a single ad-

dress space model for communication with explicit declaration of data dependencies; the

overall model is one of task parallelism. Jade has been implemented as an extension of the C

programming language on shared and distributed memory machines and on heterogeneous

workstation clusters.

2.6.10 Mentat

Mentat, developed at the University of Virginia [45], [46], is an environment for coarse-

grain parallel application development. The Mentat language is derived from C++ and in-

cludes support for explicitly identified parallel class types. One of the more interesting as-

pects of Mentat is the run time tracking and enforcement of data dependencies. The coarse-

grain nature of Mentat stems from the fact that all active classes in Mentat have separate ad-

dress spaces; the operating system overhead required to implement separate address spaces

generally precludes a large number of objects.

29

2.6.11 µC++

Buhr et al. [47] developed µC++ by adding four classical concurrency abstractions to

C++: coroutines, monitors, coroutine-monitor, and task. The communication model in µC++

is a single address space, and implementations support only shared memory multiproces-

sors. Threads are represented in µC++ by special, explicitly declared coroutine class types.

In addition to mutex and other synchronization types, µC++ allows for conditional accep-

tance of communication, all of which occurs via member function calls. Thread context

switches in the current µC++ implementation occur at the user level without the necessity

for operating system calls.

2.6.12 Paragon

The Paragon project of Chase, Cheung, Reeves and Smith [48] is implemented via a

C++ library for the support of distributed data structures. Support is provided for distributed

arrays, both through partitioning and replication. Paragon also provides permutation and

reduction operators as well as a number of interesting conditional structures for expressing

spatial and temporal distribution.

2.6.13 CA/C++

CA/C++, for Concurrency Annotations in C++, is a method for representing concurrency

in C++ programs through the addition of a set of annotations [49]. Annotations, similar in

structure to classes, are written to identify the concurrency characteristics of normal classes,

for example the set of pre- and postconditions necessary for a method call to be available

for scheduling. Annotation objects can have their own states separate from the object they

specify. CA/C++ is applicable to shared memory architectures and has been implemented

on Sun multiprocessors using Solaris 2 threads.

2.6.14 POOL-T

POOL-T, developed by America [50], is based on message passing but uses synchronous

message passing rather than the asynchronous message passing of actors. POOL-T is tar-

geted particularly toward large system development on medium-parallelism architectures (4

to 1000 processing elements) and was developed with an interest in applying formal meth-

ods for proving program correctness.

30

Chapter 3

THE ACTOR INTERFACE

The Actor Interface (AIF) provides a high-level interface for expressing concurrency.

The purpose of the high-level interface is to insulate the application—and by extension, the

developer—from the details of the underlying hardware without reducing parallelism. The

AIF is based closely on the Actor model [51] and supports such extensions as aggregates [5]

and meta-programmability. In this chapter, we consider the basic actor interface; in Chap-

ter 5, we consider advanced meta-programmability features which facilitate tuning the op-

eration and performance of the run time support. To exemplify use of the Actor Interface,

we will use examples from ProperHITEC, a parallel version of the HITEC application for

sequential test generation [52]. Complete details of theProperHITEC implementation are

deferred to Chapter 6.

3.1 Actors and Continuation Passing Style

The fundamental object in the Actor model [51], [53] is the actor, an object that com-

municates with other actors by sending messages. Message delivery in an Actor system is

reliable, unordered, and fair. All actions an actor performs are in response to messages;

when a message is received, the receiving actor may send messages to other actors, create

new actors, and change its local state (Figure 3.1). There is a close relationship between

sending messages in the Actor model and calling a remote procedure in the RPC model of

distributed programming [20]. Because messages automatically invoke a method of the tar-

get actor when received, the actor send operation more closely resembles a remote proce-

dure call than it does a send operation in a send-receive programming model.

The actor model lacks explicit sequencing primitives. Synchronization is implicit and

derives from the single-threaded nature of individual actors. The return executed at the com-

31

Actor A

Actor B Actor C

TypeOfA::x()

TypeOfB::y()

local=
local+1

TypeOfC::new()

Figure 3.1 Actor operations

pletion of an actor method is an implicit wait; the actor automatically becomes available for

any pending method invocations. There is no order on method invocations. Since an actor

cannot suspend execution implicitly in the middle of a computation, continuation passing

style (CPS) [16] is used to express control-flow and data dependencies that in other models

would be expressed using imperative wait constructs.

Figure 3.2 illustrates the major differences between the RPC and Actor/CPS models. In

the RPC implementation [20], a function f invokes a function gwhich executes on a remote

thread. When the call to g occurs, the run time on the local system marshals the arguments

required by g, sends them to the run time on the remote node, and blocks waiting for the

return value from g. On the remote node, the run time system receives the request, deter-

mines that it is a request for a call to g, unmarshals the arguments, and invokes g. When g

RPC f()

call g()
and wait

g()

y= return value
finish f()

return x

Actors/CPS a.f()

call b.g(a.f´)
no wait

b.g(c)

a.f´(y)

return
c(x)

Figure 3.2 RPC and Actors/CPS

32

executes a return, the run time on the remote node marshals the return value and sends

it to the local node which unmarshals it and continues f. Because RPC calls block, RPC

represents distributed programming, programming with a single thread of control in multi-

ple address spaces; the RPC model itself does not express parallelism. The marshaling of

arguments implies that RPC is call-by-value.

The Actor/CPS case extends the RPC model to support parallelism and object-oriented

programming. Because the model is object-oriented, all functions are member functions

and must be invoked with respect to an actor; the calls to f and g are made with respect

to objects a and b, respectively. The actor becomes the unit of synchronization: each actor

has its own (light-weight) thread; methods of different actors may execute concurrently, but

only one method of an individual actor may be executed at a time.

Like RPC, actor methods have call-by-value semantics; unlike RPC, the call of an actor

method is not a blocking operation. As a result, an actor method does not return a value. In

the figure, the f member of actor a calls the g member of b but does not wait. Instead, a

continuation is passed as an argument to g. The continuation that f passes, a.f’, specifies

that the object a and the code f’will process the value returned by g. The function g treats

the continuation c as a function pointer; when the return value x is computed, g calls the

continuation c with that value. Continuation variables are the parallel, object-oriented ex-

trapolation of serial, procedural function pointers. The figure also illustrates several ways

the Actor model facilitates the overlap of computation and communication. Not only is the

local processor free to process other actor method invocations when f completes, but fmay

invoke b.g as soon as the necessary arguments are available. If f has significant compu-

tation to perform that does not depend on the value computed by g, the execution of that

computation may occur concurrently with the computation of g.

3.2 Concurrent Objects

3.2.1 Actor types

The library supports user-specified actor types derived from a common class, Actor,

provided by the library. The protected and public interface to the Actor class are shown

in Interface 3.1.
�

Implementation of actor types can be performed in two ways; either via a

change to an existing class or via inheritance. For example, the main test generator object
�

In this and other interfaces resented in this work, the C++ code has been simplified for clarity. Private
interfaces are always omitted and often protected interfaces are omitted as well. Implementation details that
do not contribute to understanding are omitted.

33

Interface 3.1 class Actor

class Actor
{
protected:

Actor();
virtual ˜Actor();

virtual void terminate();
...

};

in HITEC is the Window class. To create a parallel test generator, we could modify HITEC

to make the Window object an actor:

class Window : public Actor {
...

};

This, however, requires an incompatible modification of the serial application. Instead, we

choose to define a new type, which is both an actor type and a Window:

class TestGenerator : public Actor,
public Window {

...
};

Adding the Actor base to a class enables the creation of actor methods, actor names,

and continuations, described below. Parallelization through derivation was developed in re-

sponse to one of the major goals of this work: to provide a method of parallelization which

does not require backwardly incompatible changes to the serial code. Because C++ specifies

static binding for nonvirtual functions [29], it may be necessary to modify the original serial

code to enable effective use of derivation. However, such use of dynamic binding is at the

center of object-oriented programming and is generally not objectionable. In some cases,

care may be necessary in adding dynamic binding to existing functions; dynamic binding

incurs a fixed amount of overhead at function dispatch time, and in the core of some algo-

rithms this overhead can be significant.

There are no restrictions on the structure of actor classes; they may have public, pro-

tected, and private members, may be derived from other types including other actor types,

and may be used as class members. Parallelism and synchronization are expressed only

through the use ActorNames, ActorMethods, and Continuations, described in

the sequel; member function calls and access to data members expressed via C++ pointers

occur as they do for any C++ object. This approach—the addition of methods for express-

ing parallelism without changing the meaning of native C++ constructs—is taken throughout

34

the interface design and implementation. Most uses of native C++ constructs are safe in a

medium-grain parallel environment; rather than preclude many of these constructs because

they are potentially unsafe, a design style is supported in which parallel constructs are added

when semantics in a parallel environment are undefined.

The alternative approach, precluding the use of C++ constructs for which it is impossible

to assign parallel semantics, was never considered for a number of reasons. First, a library-

based implementation has no way of enforcing the use or omission of nonlibrary constructs.

A particular a set of rules could have been specified, but such idiomatic usage would have

been unsafe and difficult to debug. Furthermore, each added restriction would result in ad-

ditional impediments to reuse of existing serial code. Finally, such enforcement is rarely

successful; either the programmer can get around it or unsafe holes remain.

Because a parallel semantics is only supplied for interface objects, the exact semantics

of some C++ statements is not defined. For example, if an application uses a global variable,

the interface does not define how many copies of that variable will exist.

3.2.2 Actor names

Actor names serve the role of pointers for instances of actor classes; unlike C++ pointers,

actor names are valid in the global namespace of a running program, independent of the

number, type, and interconnection of threads executing the application. Actor names are

manifest as a library-provided template class, ActorName. ActorNames are combined

with ActorMethods to create Continuations. The ActorName interface is shown

in Interface 3.2.

In many parallel interfaces, global names are implemented as opaque objects, with little

or no public interface other than that used in expressing communication. By contrast, in

the AIF, actor names are first class values with a rich interface which facilitates their use in

parallel programming on contemporary architectures.

As one might expect, actor names may be created from a pointer to an actor object:

TestGenerator* p = ...; // p points to an actor in this
// address space. p is not
// necessarily valid on all
// threads: machine-dependent

ActorName<TestGenerator> name = p; // name is valid on any thread:
// machine-independent

35

Interface 3.2 class ActorName

template <class Type>
class ActorName : public ActorName<Generic>
{
public:

ActorName();
ActorName(class Type&);
ActorName(const ActorName<Type>&);
˜ActorName();

ActorName<Type>& operator = (class Type&);
ActorName<Type>& operator = (const ActorName<Type>&);

operator Type* () const;
Type* operator -> () const;

static ActorName<Type> newName();
...

};

However, the inverse operation is also defined:

ActorName<TestGenerator> name = ...; // a global name

TestGenerator* p = name; // p will point to the actor
// represented by name if the
// actor is within the address
// space of the executing thread;
// else p = 0

This style of name/pointer coercion is similar in spirit to the pointer conversion operators

in the C++ run time type facility [54]. ActorNames support most of the operations of C++

pointers and with much the same syntax. Other features of ActorNames are considered in

the discussion of aggregates (Subsection 3.3.2) and advanced meta-programability features

(Chapter 5).

Actor names have a newName() member which allocates a new name in the global

namespace that is unique and is not bound to any actor. This name can then be used when

a new actor is created to bind the new actor to the preallocated name. In this way, any ac-

tor that creates a new actor may learn the name of the new actor. Moreover, by preallocat-

ing names, tightly coupled sets of actors can be created which know each others’ names at

construction:
�

�

Because the syntax for calling methods and creating actors has not yet been presented, this example is
presented in pseudocode rather than in legal library code.

36

ActorName a = newName(), b = newName();
create actor a (b);
create actor b (a);

In the absence of the separation of the operation of creating names and actors, it becomes

necessary to create the first actor, to create the second with the name of the first, and then

to communicate the name of the second to the first:
ActorName a, b;
a = new actor;
b = new actor (a);
send b to a;

Not only is this latter method more clumsy, it violates an invariant popular in C++ in which

instances are constructed only when all necessary arguments are available [29].

When names are created separately from actors, communication becomes uncoupled in

both time and space. A name may be created, exchanged, and used as the destination of

communication all without regard for where or when the actor will be bound to the name.

Name creation is a distributed process that requires no global communication.

Aside from the newName() member, only actors themselves can directly learn their

names. The ability to restrict indiscriminate distribution of actor names is useful in reason-

ing about system behavior [51]; when it can be proven a name does not escape a set of ac-

tors, it can be guaranteed that the actor of that name cannot be influenced directly by actors

outside the set.

3.2.3 Actor methods and continuations

ActorMethods are member functions which may be invoked asynchronously and re-

motely. ActorMethods are executed via Continuations, the object-oriented, paral-

lel extension of member function pointers. An actor method is a member function of an

actor class that has been declared to be callable through a continuation via the addition of a

reference to a library-provided ActorMethod class. For example, in ProperHITEC, a

Vectors actor type is created through derivation from the HITEC VectorStates class

and the library Actor class. The new Vectors inherits a member function, test. The

test member of the vector database class Vectors is called by TestGenerator ac-

tors. To enable calling the member function, a nested class of the same name is defined:
class Vectors : public Actor,

public VectorStates {
...
class test : public ActorMethod<VectorList>

{ ActorMethodOf(VectorList); };
void test(const VectorList&);
...

};

37

The nested class with the same name as the normal C++ member enables the creation of

continuations that take a value of type VectorList as a parameter. When such a contin-

uation is executed, the testmember function will be scheduled for execution. The binding

type of the C++ member function—dynamic for virtual members, static otherwise—is

maintained.

The templated base class ActorMethod and the macro ActorMethodOf are pro-

vided by the library; together they define nestedContinuation classes. Each actor method

class defines a nestedContinuation type, the interface of which is shown in Interface 3.3.

The symbols ActorType and MethodName are replaced for each invocation, e.g., in

the case above, they would be VectorStates and test, respectively. The Type pa-

rameter is indicated by the template parameter of the ActorMethod type, in the example

VectorList. The Continuation<Type> base class is provided by the library and is

considered in greater detail in Subsection 3.2.4.

A continuation is created by specifying an actor method and an actor name. The test

member may be called as:

Vectors::test::Continuation cont (vectorDB);
cont(vectors);

The first line defines a continuation cont, which when executed will call the member func-

tion test for the object identified by the name vectorDB. The second line calls the con-

tinuation with the vector list vectors as an argument. Execution via continuations differs

from normal member function execution:

� Execution is asynchronous with respect to the caller. The actual execution of the mem-

ber function occurs at some unspecified time in the future.

Interface 3.3 class Continuation

class ActorType::MethodName::Continuation : public Continuation<Type>
{
public:

Continuation(ActorType&);
Continuation(const ActorName<ActorType>&);
Continuation(const Continuation&);

virtual ˜Continuation();

const Continuation& operator = (const Continuation&);
void operator () (const Type&) const;

...
};

38

� Due to their asynchronous nature, continuation calls do not return a value.

To ensure type-safety, actor methods take only a single argument, indicated by the template

parameter of the ActorMethod class. For cases in which multiple arguments are required,

they are wrapped in a structure. Continuation execution is the sole method of expressing

concurrency in an actor program.

NewActorMethods provide similar functionality for constructors. A nested contin-

uation type is declared for each constructor. Returning to the ProperHITEC Vectors

example, the NewActorMethod for the Vectors class is written as:
class Vectors : public Actor,

public VectorStates {
...
struct Arguments { ... };

class New : public NewActorMethod<Arguments>
{ NewActorMethodOf(Arguments); };

void Vectors(const Arguments&);
...

};

When a new actor is created, no name is passed to the constructor:

Vectors::New::Continuation cont;
cont(Vectors::Arguments(...));

In this case, the creating actor does not learn the name of the new actor and can only commu-

nicate with it if it learns the name though some other form of communication. For an actor

to learn the name of the child it creates, it allocates a new name as described previously and

provides it as an optional argument to the new actor continuation:
ActorName<Vectors> name = ActorName<Vectors>::newName();
Vectors::New::Continuation cont (name);
cont(Vectors::Arguments(...));

In this case, the creating actor may now use name to communicate with the new actor. As

with the nonconstructor counterpart, calling new actor continuations schedules creation of

the actor; the actor is not created immediately. Any messages sent to the actor before it

is created become pending, waiting for the construction. It is not required that the same

actor create the name and the actor. Once an actor name is created with newName(), it can

be used in creating normal method continuations. Again, these continuations, when called,

become pending until an actor is created with the allocated name as an argument to the new

actor continuation. New actor continuations take a number of other optional parameters

which allow the application to influence where the actor will be constructed. This type of

control falls under the topic of meta-programming—programming the underlying run time

system—and is consider in Chapter 5.

39

3.2.4 Continuation passing

In the example described in Subsection 3.2.3, the continuationcont is created and called

directly; thus, the declaration of the Vectors class must have been seen prior to that point.

This is an example of tight-coupling, in which the method caller is directly dependent on

the type of callee. While in the case of the test generator this level of dependency is not

of concern, in the more general case it can be a significant impediment. Code that calls a

continuation must be dependent only on the type of argument expected by the continuation;

it should be independent of the actor type and individual method which were used to create

the continuation.

We illustrate with a common example that is used in the CAD applications, a barrier.

When a number of actions have to be completed before a subsequent operation is started, a

barrier is often used. A barrier actor would require two arguments to perform its function:

an integer indicating the number of events on which to wait, and a continuation that it would

call when the necessary events occurred. A client actor could then use the barrier:

Client::Method::Continuation cont (*this);
Barrier::New::Continuation create;
create(Barrier::Arguments(4, cont));

The first line of the example creates the continuation that the client code wants called, the

second line creates a continuation which will create the barrier actor, and the third line calls

the continuation with the number of events, four, and the continuation to call when those

events have occurred, cont. As mentioned previously, continuations take a single argu-

ment; thus, a trivial structure continuing the arguments is constructed and passed.

The incompleteness of the interface as presented is illustrated if we now attempt to de-

sign the implementation of the barrier class. As illustrated, the Barrier constructor ex-

pects an argument of type Client::Method::Continuation. If we were to design

the barrier with this expected argument, the class could not be used by any other type of

client; a new barrier class would be required for each type of client. This level of depen-

dence effectively precludes composition.

To support composition, the library defines another, more generic templated continua-

tion type, Continuation<Type> (Interface 3.4). Referring back to Interface 3.3, we

see that Continuation<Type> is the base class of the nested continuation types. The

Continuation<Type> class has an interface very similar to that of the nested contin-

uation type. The only difference is the lack of public constructors except a copy construc-

tor which means that the only way a Continuation<Type> instance may be created is

from an existing Continuation<Type> instance. Although this definition appears to

40

Interface 3.4 class Continuation<Type>

template <class Type>
class Continuation : public Continuation<Generic>
{
public:

Continuation(const Continuation<Type>&);
˜Continuation();

const Continuation<Type>& operator = (const Continuation<Type>&);

void operator () (const Type&) const;
void operator () (Value<Type>&) const;

};

be circular, because nested continuation types are derived from the templated types, they

can be used in those cases where a reference to the base class is specified. Thus, Contin-

uation<Type> instances can be created by copying instances of nested continuations;

the run time support ensures that no type information is lost in this operation.

In the example, a Barrier actor can now be defined:

class Barrier : public Actor {
public:
struct Arguments { Arguments(int, const Continuation<Void>&);

int events; Continuation<Void> cont; };

class New : NewActorMethod<Arguments>
{ NewActorMethodOf(Arguments); };

Barrier(const Arguments& arguments);
...

};

With this definition, the example client code works as shown. The client continuation type

Client::Method::Continuation is created and then implicitly converted at the

call point to the base type, Continuation<Void>. Thus, the call is type safe: passing a

nested continuation of an ActorMethod<int> class would result in a syntax error since

Continuation<Void> is only a base class of ActorMethod<Void> nested contin-

uations. Since continuations of either type take an argument of only the specified type, type

safety at the point of the continuation call is guaranteed. A call of a continuation using the

wrong operand type is not possible. Finally, actor and method compatibility is also type

checked at the point where the nested continuation instance is constructed. It is not possi-

ble to create a continuation that calls a method on the wrong type of actor.

41

The value of type safety is a hotly debated topic. Such arguments notwithstanding, C++

is statically type safe and is considered an integral part of the language [29]. Furthermore,

anecdotal evidence indicates that weakening the type system causes significant difficulty for

C++ programmers who come to rely on the compiler to find trivial type errors [54]. While

static type safety leads to the most inelegant aspects of the actor interface, i.e., the necessity

to resort to preprocessor macros, such inelegance is considered acceptable in the face of the

alternative, lack of type safety.

3.3 Concurrent Collections

Individual actors express neither internal parallelism nor data distribution. Collection

types, based on aggregates with explicit distributions, facilitate both object-internal paral-

lelism and data distribution.

3.3.1 Aggregates

An aggregate is a collection of actors that share a common aggregate name [5]. When a

continuation which was created from an aggregate name is executed, the appropriate actor

method is executed by one or more representative actors. An example of the use of ag-

gregates to represent a concurrent array is shown in Figure 3.3. In the concurrent array,

non-overlapping ranges of elements are located in different actors. The figure shows two

possible representations; an actor representation and an aggregate representation. In the

actor implementation, a gateway actor is required—because client code knows only one

gateway

[0:19] [20:39] [40:59]

client:5 client:49

[0:19] [20:39] [40:59]

client:5 client:49

aggregate

Actor Aggregate

Figure 3.3 Implementations of a concurrent array

42

name—which must redirect requests to the appropriate subrange actor. This serialization

may lead to bottlenecks; an extra indirection is required and the indirection process is se-

rialized. In the aggregate implementation, since all representatives in the aggregate share

the same name, there is no necessity to send all requests to a single actor. Instead, a request

may be sent directly to the appropriate representative. Serialization will occur only if two

clients attempt simultaneously to access an element stored in the same representative.

Aggregate types are derived from the library class Aggregate (Interface 3.5). The

Aggregate interface is similar to the Actor interface. The added routines allow the de-

termination of the index of individual representatives as well as the number of representa-

tives in the aggregate.

The HITEC fault database class Fault is made an aggregate in the parallel application:

class FaultDataBase : public Aggregate,
public Fault {

...
};

Again, derivation is used to allow sharing of object code with the serial application. Ac-

torMethods and Continuations have the same syntax for aggregates as they do for

Actors. However, when a continuation is called on an aggregate, a representative is auto-

matically selected by the run time system. Distribution of representatives and customization

of the representative selection mechanism are considered in Chapter 5, though it is worth

noting here that resolution to broadcast is an available choice. In this case, the method will

be invoked once for each representative. Because broadcasting is handled through repre-

sentative selection, there is no syntactical differentiation between a unicast continuation call

and a broadcast continuation call.

Interface 3.5 class Aggregate

class Aggregate : public Actor
{
public:
unsigned int representativeIndexOf() const;
unsigned int numberOfRepresentativesOf() const;

protected:
Aggregate(Director&);

virtual ˜Aggregate();

virtual void terminate();
...

};

43

3.3.2 Aggregate names

Just as ActorNames are used for Actors, AggregateNames are used for aggre-

gate types. The AggregateName interface is given in Interface 3.6.

The operation of the pointer coercion functions for aggregates is an extrapolation of the

functionality for actors. In the aggregate case, a pointer to a representative will be returned

if any representative is within the address space of the executing thread. Furthermore, if

multiple representatives are reachable, the ‘nearest’ representative will be returned, i.e., if

a representative was created on every thread, the coercion function will return a pointer to

the representative created on the executing thread.

In addition to the functions available on ActorNames, the AggregateName inter-

face includes several extensions: collection operations and coercion to ActorNames.

3.3.2.1 Intraaggregate operations

Aggregate names provide two collection operations, representative() and all-

Representatives(). Both operations return a new AggregateName instance. In

Interface 3.6 class AggregateName

template <class Type>
class AggregateName : public AggregateName<Generic>
{
public:

AggregateName();
AggregateName(class Type&);
AggregateName(const AggregateName<Type>&);
˜AggregateName();

operator ActorName<Type>& ();

AggregateName<Type>& operator = (class Type&);
AggregateName<Type>& operator = (const AggregateName<Type>&);

static
AggregateName<Type> newName();

operator Type* () const;
Type* operator -> () const;

AggregateName<Type> representative(unsigned int) const;
AggregateName<Type> allRepresentatives() const;
...

};

44

the case of representative(), the new name will be resolved to the name of the rep-

resentative indicated by the argument. While the static interface of the new instance is not

changed, if the new instance is used in the creation of a continuation, when called the con-

tinuation will cause execution of the appropriate method on the selected representative, by-

passing the representative selection mechanism. Similarly, if the name returned by all-

Representatives() is used, the applicable method will be run once for each represen-

tative.

3.3.2.2 Actor name coercion functions

AggregateNames can be coerced intoActorNamesof the same template type with-

out loss of generality, i.e., representative selection semantics. The purpose of allowing such

coercion is to facilitate incremental parallelization. Consider the situation in which an ac-

tor class is designed, implemented, and used by a number of clients. If it is determined that

the actor type is becoming a bottleneck, it is natural to create an aggregate implementation

that uses the multiaccess interface of aggregates to express a higher degree of concurrency.

If the process of upgrading an actor to an aggregate invalidates a large quantity of exist-

ing code, there will be a high cost for the change. However, because ActorNames and

AggregateNames for the same object can coexist, existing code need not be changed.

Internally, the two types have the identical representations. While only objects that manip-

ulate AggregateNames can perform intraaggregate operations on the names, code that

manipulates aggregate names via ActorName instances still use representative selection

features.

The implicit coercion facilitates the writing of libraries for which client code is indepen-

dent of the choice of an actor or aggregate implementation. Because the unicast/broadcast

nature of a continuation is inherited from the name used to create the continuation, the choice

of which mechanism will be used can be made by the creator of the name. By contrast, in

the original model, the choice was always made at the point at which the continuation is

executed [5]. The ability to encapsulate this information in continuations which are then

passed to independent packages should find use in the design of reusable library modules.

3.4 Performance

There are a number of operations in the actor interface whose cost can become the the

limiting factor in the applicability of the library. The greater the cost of these operations

45

becomes, the higher becomes the minimum granularity of computation required in order

that communication costs do not dominate and cause performance degradation.

The cost of several basic operations in the actor interface is summarized in Table 3.1.

Each of the costs is generated by Quantify from Pure Software [55] on a Sun 4/690MP, a

45MHz SuperSPARC based multiprocessor
�

. It should be noted that these values represent

the current implementation which has been tuned for the performance of the CAD appli-

cations being developed in the ProperCAD project, but not otherwise. In particular, it has

been not tuned specifically for the operations described in this section.

3.4.1 Actor creation

Actor creation time is measured as the time to execute the task which creates an actor,

including all function call overhead. The sample actor used in this test has no member state

or initialization other than those inherited from the Actor base class. 200z Two values are

shown, the first for actors that are not given prebound names and the second for those that

are. The difference illustrates one of the optimizations in the name protocol of the AIF: if

an actor name is not assigned a name via a parameter to the new continuation call, bind-

ing information cannot escape and thus does not have to be maintained by the name server

(Chapter 5). Of the 421 cycles required to create the unnamed actor, 79 cycles are memory

allocation.
�

While useful for optimization purposes, Quantify results show some inaccuracies when they are com-
pared against hand calculation and thus should be interpreted with care.

Table 3.1 Costs of actor primitives

Operation Cost
Cycles µsec

Actor Creation unnamed 421 10
Actor Creation named 3671 91
Actor Name Allocation 166 4
Actor Name Pointer Coercion direct 48 1
Actor Name Pointer Coercion indirect 255 6
Continuation Call 551 13
Continuation Execution 1130 28

46

3.4.2 Actor name allocation

Allocation of an unbound name is a local operation. Much of the overhead in this case

is attributable to several layers of function calls that have not been inlined; the function call

overhead has no appreciable impact on the current suite of applications.

3.4.3 Actor name pointer coercions

Actor name coercion is the process of turning an actor name into a pointer to an actor in-

stance. The weight of this operation is dependent on the internal binding state of the name.

When an actor name is created directly from a pointer to an actor, the information is main-

tained directly in the name, and thus direct coercion is fast.

If an actor is created with an optional name argument, pointer coercion of the unbound

name after the actor has been created results in the correct pointer value but requires a level

of indirection, though the name database, to resolve the name. Once the name has been

resolved one time, the binding state of the name is updated in place and subsequent coercion

is direct.

3.4.4 Continuation call

The cost of calling a continuation is the cost of creating the task that will execute that

continuation plus the cost of inserting the task into the task queue maintained by the run

time. Chapter 5 discusses task queues.

3.4.5 Continuation execution

The cost labeled continuation execution is not the cost of a primitive operation; it rep-

resents the interval of time starting when a continuation is called and ending when the first

line of the associated method occurs. In general, this period of time can be arbitrarily long

if other tasks are waiting. The values in the table represent the minimum possible dura-

tion, when no intervening tasks are executed. It includes the cost of calling the continuation,

given earlier, and adds to it the cost of dequeuing the task and executing it.

The values of these various parameters provide some indication of the level of com-

munication the current AIF implementation can efficiently support. Some of these values

can be improved, some dramatically, such as the cost of creating an actor with a prebound

name. However, there will always be limits to the fineness of granularity supportable, even

on shared memory platforms, if not simply because of the separation of concurrent and serial

47

constructs in the library; a truly fine-grain approach requires that virtually all structures be

concurrent. The current expression of concurrency in the AIF is too inconvenient to express

truly fine-grain concurrency.

3.5 Evaluation

In this section, we summarize our experiences with Actor Interface. We consider both

those aspects of the interface that achieved our goals and those that are either inelegant or

in need of extension.

3.5.1 Static type safety

Static type safety is completely guaranteed by the interface and, as shown in the barrier

example in this chapter, has already found use in existing CAD applications. Static type

safety was considered a key goal of the interface design and is one of the characteristics

that makes this interface unique among actor approaches to concurrent C++.

3.5.2 First class names and continuations

The ability to create, operate on, and interchange actor and aggregate names has proven

to be vital to the construction of an interface that has a high degree of expressibility but that

supports static type safety and separate compilation. We believe that the expressibility of

names linked with statically typed continuations will be key to implementing application

libraries that can be effectively composed to create new applications.

3.5.3 Derivation-based parallelization

Our experience with parallelization through derivation leads us to believe that it will be

key to parallelizing existing codes without the doubling of development and support costs.

For many medium-grain applications, the added cost of dynamic binding will be acceptable,

and the impact on the expressibility and readability of the serial code will be nominal. To

attempt to further qualify the applicability of incremental parallelism, we must separate par-

allelization efforts into two classes: those that are performed within the same development

organization as the serial code and those that are not.

Where serial and parallel development occur in tandem, incremental parallelism holds

the most potential. The work in this thesis shows that via derivation, serial and parallel ap-

48

plications can be developed from the same source and object codes using dynamic binding to

select the appropriate mechanism. Because dynamic binding is not the default in C++, par-

allelization may require the specification of more dynamically bound functions in the serial

code than might otherwise be used. However, since the specification of dynamic binding has

no impact on the semantics of the serial code, little extra development and support costs are

incurred.

Beyond the addition of dynamic binding, to support concurrency certain styles of pro-

gramming—for example, passing values among procedures via static variables—must be

precluded. While this prohibition potentially reflects a more significant impact on the cost

of serial development, the constraints required for parallelization overlap those posed by

software engineering quality standards and thus are generally not objectionable. Thus, the

costs of supporting parallelism can be brought down to level of the actual cost of express-

ing the parallel algorithm, specifically eliminating the redundant costs usually implied by

concurrent but independent serial and parallel development.

In contrast, when a serial code is developed by an outside party, it is difficult to quantify

or bound the effort required to incorporate revisions of the serial code into a parallel applica-

tion. The most obvious reason for this difficultly is the inability to quantify or bound the de-

gree of change that can occur in the serial code. Beyond the difficulties implied by arbitrary

changes in the serial code, if the programming style restrictions required for concurrency are

not present in the serial development, the changes required to satisfy these restrictions must

be reintegrated in every new serial release. While these constraints are generally the same

as those required by software engineering quality standards, in their absence, the techniques

developed and used in this thesis may be inapplicable.

3.5.4 The preprocessor

The preprocessor [56] is used to implement the nested classes in ActorMethods and

to provide some of the type safe interface in actor and aggregate classes. Use of the pre-

processor in C++ is generally considered inelegant and to be avoided [54]. Yet at the same

time, the name lookup and inheritance mechanisms in C++ are in some respects very inflex-

ible. While it is simple to specify classes with flexible interfaces and functionalities, it is

not possible to specify characteristics of classes of classes, that is, properties that hold for

sets of classes. Classes of classes are called metaclasses [57]. Recently, significant interest

has arisen concerning metaobject protocols, functions that operate on metaclass objects, or

metaobjects [58]. Most of this work has been in CLOS, the Common Lisp Object System,

49

and while some of the concepts are not applicable to the static environments usually found

in C++, when some of the concepts from a metaobject protocol are used, the expressibility

of C++ can be better understood. In this light, both templates and the preprocessor can be

seen to provide some level of metaclass programmability. It was in this light that use of

preprocessor macros was accepted, since all indications were that no better solution would

be found. Experience gained in using the preprocessor to implement metaobject protocols

may lead to possible extensions or to a new language that could maintain compatibility with

C++ and yet extend the expressibility. Such a language or extension is as applicable to serial

programming as it is to concurrent programming.

3.5.5 Multiple inheritance of actor types

Currently, actor types cannot be virtually derived from the actor base class. While mul-

tiple inheritance can be used with an actor type and one or more nonactor classes, multiple

inheritance of actor types requires that the Actor base be a virtual base in all classes de-

rived from Actor. This is a result of the type model in C++: it is fundamental in C++ that a

member function may not be called for an object unless the type of the object is sufficiently

well specified, i.e., to within a base class defining the indicated member. To schedule ac-

tor method invocations, the AIF run time casts an Actor reference to the target type and

then calls the appropriate member. Because the actor interface is type safe, this downcast

is always valid. However, in the current language, downcasts from virtual bases are not le-

gal [56]. This restriction has been lifted by the C++ standardization committee [54]. When

compiled with compilers that support the new features, the AIF will support virtual bases.

The prohibition against virtual bases is the only limitation on actor class organization.

3.5.6 Actor names

While ActorNames can be created from actors of derived types, actors names of re-

lated types do not support the trivial conversions that pointers and references do. For ex-

ample, given two actors:

class A : public Actor { ... };
class B : public A { ... } b;

References and ActorNames of class A can be created from the b object:

A& ref = b;
ActorName<A> name = b;

50

The conversion to a base class type is automatic. However, ActorName instances have no

relationship even if their template argument types do:

ActorName<A> x = a;
ActorName y = b;
x = y; // error

ActorNames are among the class of smart pointers that is not currently well-supported in

C++ [59]. As in the case for virtual bases, a method for full functionality has been adopted

by the C++ standardization group and awaits implementation [54].

3.5.7 Applicability

As noted in Section 3.4, the applicability of the interface to concurrent programming is

limited by a combination of implementation efficiency and method of expression.

3.5.7.1 Efficiency Constraints

Efficiency constraints take two forms: those that are inherited from the characteristics

of the underlying parallel platform and those implicit in the interface and thus present in

all implementations. In the former class are issues such as network latency and bandwidth.

There is no way to incorporate hardware limitations into a description of the applicability of

the AIF, because the AIF is designed to run on a variety of architectures. Therefore, an ap-

plication based on the AIF may show performance dependence on the underlying platform.

While the AIF can be used to express granularities from medium to coarse, efficiency of the

overall application will be a function of the combination of application and platform granu-

larities. A goal of the design of the AIF was that the interface and implementation provide

coarse-grain concurrency across a range of implementations and medium-grain concurrency

on those platforms providing sufficient processor and communication resources.

The second class of constraints relates to the model itself; this class limits applicability

regardless of target platform. These limitations are manifest by the operation costs in the in-

terface, reported in Section 3.4. While the values reported may be improved significantly,

the programming model—in particular, the meta-programmability described in Chapter 5—

places a lower bound on the cost of these operations. In effect, because the application de-

signer has the ability to express low-level dynamics such as scheduling, the run time sys-

tem is constrained in the set of implementation and optimization techniques. For example,

while it is conceptually possible to inline a method call from one actor to another actor when

the actors are in the same address space, the run time library is precluded from doing this

51

because it may violate the task prioritization defined by the designer. The ability of the ap-

plication to influence run time limits the range of possible run time implementations. The

result of this choice is that the interface is applicable to situations where optimizations at the

level of continuation passing and scheduling will be done only by the developer, not by the

run time. Since as concurrency increases, optimization becomes more important yet more

difficult to perform manually, the interface is not appropriate for truly fine-grain applica-

tions.

3.5.7.2 Expression Constraints

In addition to issues of execution efficiency, another constraint on applicability is the

form that concurrency expression takes. The approach taken in this work is that the de-

fault expression, i.e., code written in C++ without using types from the library, is serial and

that only through manual addition of concurrent types is parallelism expressed. For highly

concurrent applications, this would be tedious: in every case where concurrency was de-

sired, generally both a serial and a concurrent construct would be required. In contrast, in

a language like IC-C++ [26], all operations are given concurrent semantics and thus only a

single construct is required. In cases in which fine-grain concurrency is required, the use of

ActorMethod classes and explicit continuations would significantly increase the amount

of code necessary.

While the limits of applicability are understood qualitatively, quantitative understanding

will require more experience. Of particular value would be a measure of the lower bound

on the support for medium-grain concurrency, i.e., a measure of the greatest degree of con-

currency for which the interface is an effective implementation tool. The applications de-

veloped to date exhibit grain sizes that do not push the limits of the interface and imple-

mentation and thus provide little insight into a quantitative measure of concurrency which

could be used to describe the boundary between effectiveness and ineffectiveness. A clearer

understanding of this boundary is a goal of future work.

3.6 Other Actor Models and Implementations

Many implementations of the actor model or actor-like models exist. We survey a num-

ber of these implementations and contrast the features of those models and implementations

with those of the AIF.

52

3.6.1 Extensions to the actor model

The actor model in its simplest form is fairly low-level. Several extensions have been

made to the model to extend expressibility. Many of these extensions have provided new

ways of expressing constraints on when and where tasks may be executed and new ways of

coordinating communications among groups of actors [60], [61].

3.6.2 Pure actor languages

A number of pure actor languages have been implemented since the proposal of the orig-

inal model [62]. Following the original model, most actor languages are functional, i.e.,

side-effect free, and untyped. Implementations of the majority of these approaches have

targeted fine-grain concurrency on massively parallel architectures, and many were never

actually implemented on distributed machines. The earliest languages were Act [51], [63],

Act1 [64], Act2 [65], Act3 [51], Sal [51], and ABCL/1 [66]. A more recent contribution,

with an emphasis on reflection, is MERING IV [67].

3.6.3 HAL

Among pure actor languages, of particular note is the HAL language of Houck and Agha [68],

which was implemented on top of the Charm programming system [69]. HAL represents

one of the few truly distributed implementations of a pure actor language and is notable for

having formed the basis for further exploration into meta-programmability extensions of the

actor model.

3.6.4 Concert

Chien [5] recognized the need for a multiaccess interface to augment the serial interface

of Actors. He proposed aggregates as collections of actors that present a unified, yet mul-

tiaccess, interface to client code. Key to aggregates is support for efficient intraaggregate

addressing. Chien and Dally [70] proposed a pure actor language, Concurrent Aggregates

(CA), which in addition to having the features of actors, aggregates, and intraaggregate ad-

dressing, provides support for first class continuations and messages.

The Concert system of Chien, Karamcheti and Plevyak [27], [71], is a compiler and run

time support system for a version of Concurrent Aggregates on stock hardware, i.e., such

contemporary parallel machines as Thinking Machines’ CM-5 and Intel’s Paragon. The ob-

jective of the Concert system is to take a fine-grain concurrent language, CA, and through

53

extensive data flow and type analysis on the part of the compiler, produce code that runs

efficiently on medium- and coarse-grain machines. The Concert system compiler compiles

CA to C++, creating an executable that provides run times competitive with native C and

C++ [27].

3.6.5 Charm and Charm++

Charm [69], [72] and Charm++ [73] are parallel programming environments, derived

from C and C++ respectively, targeted at medium-grain architectures and applications. The

fundamental object of parallelism in Charm is the chare, an object with behavior similar to

that of actors. Charm supports collection types via branch-office chares, which are aggregate-

like objects with implicit per-thread distribution. In addition to a parallel interface, branch

office chares have a serial interface that can be used to make blocking calls on local repre-

sentative chares.

Charm was developed specifically to address the requirement for a portable, parallel in-

terface and for implementation across a wide variety of both shared memory and distributed

memory architectures. Charm differs from other actor languages in that it is targeted to

medium-grain parallelism architectures rather than to the massively parallel processors of

many other implementations. Among the most significant and unique features of Charm

are:

1. imperative-language interface. Charm is an extension of the C programming lan-

guage with extensions to support actor- and aggregate-like characteristics. With a few

exceptions, the imperative constructs of C are retained.

2. meta-programming features. Charm provides developer-visible models for the oper-

ation of the underlying run time system in the areas of load-balancing and prioritized

message delivery. Strategies in both areas can be selected from a set of alternatives

at link-time. Of particular note is work with lexicographically ordered message pri-

orities applied to search problems [74].

3. library types. Charm provides a library of object types with parallel semantics such

as read-only variables, distributed computation types such as accumulators, and dis-

tributed mappings [75].

Charm and Charm++ have also been used to implement several other abstractions. As

mentioned, HAL [68] is a pure actor language that uses Charm as the underlying infrastruc-

ture. Dagger [76] is a coordination language that adds to Charm a method of expressing

54

a partial order on Charm messages, which eliminates some of the difficulties in express-

ing data dependencies in a low-level actor language. Other extensions include the ability to

succinctly represent specific parallel idioms such as divide-and-conquer parallelism [77].

The first phase of the ProperCAD project [1] used Charm as the parallel programming

environment, and many of the extensions to the actor model that exist in the AIF are ex-

tensions of features of Charm. The priority mechanism of Charm was determined in earlier

work [1] to be crucial for efficient execution of CAD applications and was extended in the

AIF.

Features of the Actor Interface that differ most significantly from Charm are support for

static typing, as represented by first class continuations, and composability, as represented

by per-class meta-programmability. In Charm, names are created as a side effect of creating

chares. The ability to separate object creation from name creation is necessary to express

some types of computation. As in the original aggregate model, different functions are used

to specify unicast and broadcast; therefore, client code is dependent on the type of the object

to which a message is being sent.

Because Charm does not have first class continuations, two techniques are used to repre-

sent the same functionality. A user-defined continuation pair, <EntryPointID,ChareID>,

can be used. However, because the pair is not a system object, static type checking can-

not be done to ensure that the elements of the pair are consistent. Derivation has also been

proposed to express a type-safe alternative [73]. A chare that will receive a message from

another chare inherits from a receiver type defined by the sender. For example, the user in-

terface in ProperHITEC which uses barriers to synchronize aggregate creation could be

defined in Charm++ as

chare class UserInterface : public BarrierReceiver {
...
virtual void receiveBarrier();
...

};

However, this use of derivation precludes the use of more than one barrier function in a

class. The UserInterface actor, which creates three barriers, would have to keep an

extra state variable. By contrast, when first class continuations are used, a barrier actor is

created with a continuation representing the method to be called in the computation.

3.6.6 ACT++

ACT++ is a C++ library-based implementation of the actor paradigm developed by Ka-

fura and Lee [78], [79]. ACT++ implements an Actor base class that supports all the actor

55

model primitives of new, send, and become. Additionally, ACT++ supports an RPC-style

of actor method invocation [51] via blocking within the library. ACT++ allows the use of

normal C++ objects, but only as private, nonshared acquaintances of an actor. ACT++ is

targeted to distributed processing, but distributed implementation details have not yet been

reported.

3.6.7 CLAP

Recently, CLAP, C++ Libraries for Actor Programming, has been presented by Desbiens

et al. [80]. CLAP uses the actor model and a C++ class library to express actor concurrency

on distributed memory machines. The interface to CLAP is similar to that of ACT++ and

uses the dynamic type model of the original actor model. Current implementation efforts

are aimed at a network of transputers.

56

Chapter 4

ABSTRACT PARALLEL ARCHITECTURE

The Abstract Parallel Architecture (APA) comprises a model of a parallel computer and

a set of objects that represents a reification of that model. The APA provides abstractions for

thread, resource, and configuration management and has been designed to provide a stan-

dard interface across all platforms with no extraneous overhead. The APA interface pro-

vides multiple access points, which allows client code to use generic calls for noncritical

performance clients and more precise control when performance is critical.

A unique aspect of the APA design is that, from inception, it was targeted toward par-

allel architectures that mix shared and distributed memory characteristics, i.e., when some

but not all threads share some part of an address space. This integration removes the ne-

cessity for separate shared and distributed memory implementations of APA clients, such

as the AIF, and also facilitates specializing communication patterns for different configu-

rations. For example, actor applications that are run on a workstation cluster that includes

multiprocessors pass messages via shared memory within a multiprocessor and via message

passing otherwise.

The APA currently supports Sun and Encore shared memory multiprocessors and Intel

and Thinking Machines distributed memory multicomputers. The APA supports IP-connected

clusters of a single architectures, i.e., when the same program executable is run on all nodes.

The APA is self-sufficient and may be used apart from the actor interface.

4.1 Thread Management

The APA thread subsystem manages a set of virtual processing elements, represented by

instances of the Thread class. Thread objects are collected into sets characterized by the

means by which they may communicate. These sets are represented by the library classes

57

Process, ProcessGroup, and Cluster. The relationships between the sets are de-

picted in Figure 4.1.

4.1.1 Thread

The fundamental unit of computation is the thread. A thread may represent an individual

processor or a single task under an operating system supporting multitasking. The interface

for the Thread class is shown in Interface 4.1.

A reference to the current thread is returned by a call to the thisThread()member.

The container instance, in this case a Process object, containing the thread is returned via

Thread

Thread

Thread

Process

Shared Address Space

Process

Shared Memory Segment

ProcessGroup ProcessGroup

ProcessGroup

Cluster

: Completely-connected,
 reliable datagram network

Figure 4.1 APA thread management classes

58

Interface 4.1 class Thread

class Thread
{
public:

static Thread& thisThread(); // access and
Process& processOf(); // identification
unsigned int indexOf() const;

File& in() const; // stdio
File& out() const;
File& err() const;

Reservoir& privateStoreReservoirOf(); // memory management
Reservoir& sharedStoreReservoirOf(); // interface

...
};

the processOf() member. All threads in a machine are given a unique index, returned

by the indexOf() member. Each thread manages a standard I/O interface similar to that

provided by stdio in the standard C library and by the stream class in the standard C++

library.

Among the most significant responsibilities of the Thread management classes is coher-

ent management of the free store. EachThread instance manages one or moreReservoirs

which handle efficient, i.e., with minimal critical sections, thread safe allocation and deallo-

cation of memory. The memory management system is described in detail in Section 4.2. It

is worth noting here that whileThread instances have one or moreReservoirs for man-

aging memory in private and shared address spaces, they do not actually ‘own’ any memory

regions. Address space management is relegated to instances of the container classes in a

manner analogous to Mach [81]. Also, while the Thread class interface provides shared

and private free stores in all configurations, on some machines—those that support no form

of shared memory—the accessor functions return references to the same object. Whether

or not shared memory is supported is a compile time option; the choice does not incur run

time overhead on machines which do not support shared memory.

4.1.2 Process

Threads that share a complete address space are collected into a container called a

Process. Because all Threads in a Process share identical address spaces, all point-

59

ers are valid across Thread boundaries within a Process. This model is applicable, for

example, to Mach threads. The interface to the Process class is shown in Interface 4.2.

Like Threads, Processes are indexed within the running machine. Furthermore,

Process instances provide access to the threads which they contain. As shown in Fig-

ure 4.1, Process instances own the free store segment that is used by the Thread in-

stances they contain. The interfaces of the FreeStore and PageTable classes are given

in Section 4.2. The memory managed by this free store is the same as that managed by

malloc in the standard library, i.e., it is managed via the brk() system call. For use in

existing libraries and applications, together the Thread and Process classes provide im-

plementations of malloc, free, and realloc.

Many existing functions in standard system libraries are not thread safe yet they must be

used for various functionalities. To facilitate this, on machines supporting multiple threads

per process, a semaphore (Section 4.3) is available that can be used, cooperatively, to protect

calls to functions that potentially conflict. An example of this type of function is the standard

library call fopen. The fopen function scans a list of file descriptors, searching for a

free descriptor, which it returns. If two threads execute an fopen call concurrently, race

conditions may occur. Therefore, each thread is required to lock the semaphore returned by

addressSpaceLockOf() before entering fopen. While a better solution would be to

provide a thread-safe version of fopen, rewriting all libraries that are not thread-safe is not

Interface 4.2 class Process

class Process
{
public:

static Process& thisProcess(); // access and
ProcessGroup& processGroupOf(); // identification
unsigned int indexOf() const;
unsigned int numberOfThreadsOf() const;
unsigned int indexOfFirstThread() const;

Thread& thread(unsigned int);

PageTable& pageTableOf(); // memory management
FreeStore& freeStoreOf(); // interface

#if THREADED
Semaphore& addressSpaceLockOf(); // catch-all lock

#endif // THREADED
...

};

60

a feasible solution. The address space lock provides a reasonable if conservative solution

for current usage. The APA does not actually use the address space lock; all locking within

the APA is done at a finer level.

4.1.3 Process group

Threads that share some portion of their address space are collected into a container

called a ProcessGroup. Since all Threads in a ProcessGroup do not necessarily

share identical address spaces, pointers may not be valid across Thread boundaries; ad-

dresses are guaranteed to be valid if and only if they point within a shared memory segment.

This model is applicable, for example, to systems that use mmap() [82] and Unix System

V IPC. The interface of the ProcessGroup class is shown in Interface 4.3.

ProcessGroups are indexed within the running machine and provide access to the

Process instances they contain. Process instances own the free store segment and page

table which is shared among Thread instances they contain (Figure 4.1). The free store in

a ProcessGroup is mapped at the same address in all contained Processes. For use in

existing libraries and applications, together the Thread Process and ProcessGroup

classes provide implementations of shmalloc, shfree, and shrealloc.

Interface 4.3 class ProcessGroup

class ProcessGroup
{
public:

static ProcessGroup& thisProcessGroup(); // access and
Cluster& clusterOf(); // identification

unsigned int indexOf() const;
unsigned int indexOfFirstProcess() const;
unsigned int numberOfProcessesOf() const;

Process& process(unsigned int);

PageTable& pageTableOf(); // memory management
FreeStore& freeStoreOf(); // interface

...
};

61

4.1.4 Cluster

All threads in a program are collected into a container type called a Cluster. Pro-

cessGroups are interconnected by a completely-connected, reliable, unordered, datagram

network (Interface 4.4). There is conceptually one cluster in every program. Physically,

there is an instance of the Cluster class in every ProcessGroup; therefore every run-

ning Thread has access to a Cluster instance. In addition to determining the size of the

virtual machine, the cluster provides routines for mapping between Thread indices and

ProcessGroup indices.

If a machine has more than one ProcessGroup, ProcessGroups are conceptually

connected via an ordered, reliable datagram network. The send andreceivemembers of

the Cluster class are used to exchange datagrams. Since message passing occurs among

ProcessGroups, the unicast send member takes a datagram and a ProcessGroup

Interface 4.4 class Cluster

class Cluster
{
public:
static Cluster& theCluster(); // access and

// identification

unsigned int numberOfProcessGroupsOf() const;
unsigned int numberOfProcessesOf() const;
unsigned int numberOfThreadsOf() const;

unsigned int threadToProcessGroup(unsigned int) const;
unsigned int processGroupToThread(unsigned int) const;

#if DISTRIBUTED // message passing

void send(Datagram&, // unicast
unsigned int toProcessGroup,
unsigned int toThread = UINT_MAX);

void send(Datagram&); // broadcast

int receiveReady() const;
Datagram receive();

#endif // DISTRIBUTED

...
};

62

index as parameters. Optionally, if a message is to be processed by a particular Thread

of a ProcessGroup, the Thread index may be provided. The APA does not necessar-

ily route messages to individual threads; a datagram may be received by any thread within

the destination process group. The APA does not implement message passing via shared

memory; this functionality, if desired, would be part of a higher level library, such as the

AIF.

Instances of the thread management classes described above are all instantiated automat-

ically by the library. In the degenerate case in which an application is being run on a single

processor, exactly one instance of each class is created, and that instance is statically allo-

cated in the APA library. For machines on which a particular model is not implemented, for

example, multithreading on an Intel hypercube, accesses to data in the Thread, Process,

and ProcessGroup instances are resolved at link time and incur no run time overhead.

4.1.5 Thread manager

The classes described in Subsections 4.1.1 through 4.1.4 reflect the state of the running

system, but they do not include functionality for starting and stopping multiple threads. The

ThreadManager class, whose interface is shown in Interface 4.5, provides for spawning

and reaping threads.

The constructor for the thread manager object takes a pointer to a function with a sig-

nature identical to main and arranges for that function to be called once on each thread.

Interface 4.5 class ThreadManager

class ThreadManager
{
public:

typedef int (*TypeOfMain)(int, char*[]);

ThreadManager(TypeOfMain) = 0);

virtual ˜ThreadManager();

static ThreadManager& managerOf(Thread&);
static ThreadManager& thisManager();

int isFirst() const;
...

};

63

An example of the use of ThreadManager instances is shown in Figure 4.2. The actual

call of the target function, parallel occurs in the destructor of the ThreadManager

object; therefore, code that occurs after the definition of the manager but before it goes out

of scope can be used for initialization. The ThreadManager destructor completes when

the target function completes on all threads.

Depending on the application, it may be necessary to protect the initialization code with

a condition as shown in the figure. The number of times main is executed is not defined

by the APA. Code that should run on all processors should be be placed within the function

passed to the ThreadManager. Code that should run on only one thread may be placed

either within the parallel function or within main but in either case should be executed only

if the ThreadManager.isFirst() predicate is true.

Spawning threads within the destructor appears somewhat awkward at first glance but

was chosen as a compromise between portability and utility. While it would be more aes-

thetic to simply execute main once for each thread, this functionality cannot be imple-

mented on existing systems for which a function pointer is used in a spawn call. On these

systems, the indicated function runs in parallel on each thread, followed by an implicit reap

as the function returns on each thread. Alternately, a procedural approach could have been

adopted. In this case an imperative function provided by the library would be called to per-

form the spawn. This type of approach would be strictly procedural and would not allow

customization via derivation. The middle ground, the use of a member function, was cho-

sen. Use of the destructor as the selected member function is a variation on the resource

acquisition is initialization paradigm popular in C++ libraries and applications [54].

extern "C" int parallel(int, char*[]);

int
main(int, char*[])
{

ThreadManager manager (parallel);

// initialization code
if (manager.isFirst()) {

...
}

// fork occurs at destruction of manager when
// it goes out of scope here

}

Figure 4.2 Use of ThreadManager class

64

The code given in Figure 4.2, without initialization, is present in the library, which en-

ables the use of existing code with only a small change, renaming main to parallel. For

example, the parallel “hello, world” C program for the APA is

parallel()
{

printf("hello, world\n");
}

4.2 Resource Management

Free store (malloc) management is an area of common difficultly and little standard-

ization. Many machines that supply a shared memory interface provide either little support

for allocation of memory within shared memory segments or do so in a vendor-dependent

manner. Implementations of malloc are also well known for widely varying performance

characteristics. The APA free store management classes were designed to address both is-

sues as well as to provide extended functionality.

Figure 4.3 illustrates the relationship among the component classes. The operating sys-

tem interface to the free store hierarchy is contained within the FreeStore class, which

manages a contiguous segment of memory in units of pages. A PageTable is allocated

for each FreeStore, which provides allocation and deallocation of arbitrary numbers of

pages and manages concurrency on those architectures for which it is available. Reservoirs

provide a per-thread interface which efficiently manages large numbers of small and medium

size objects. Reservoir operations do not usually require the use of a critical section; there-

fore synchronization overhead is minimized.

4.2.1 Free store

The operating system interface to the free store hierarchy is contained completely within

the FreeStore class. A FreeStore object manages a contiguous segment of memory

in units of pages. FreeStores allocate, on demand, new pages of memory at the end of

the current segment and can return free pages at the end of the segment to the underlying

source. FreeStores neither handle noncontiguous segments nor maintain lists of free

pages. The FreeStore class interface is shown in Interface 4.6.

In addition to functions for allocating and free pages, free stores support a contains

predicate that returns a Boolean value indicating whether the address passed as an argument

is within the range of the managed segments. This predicate allows higher levels in the free

65

.

Re
se

rv
o

ir

Re
se

rv
o

ir

Pa
g

e
Ta

b
le

Data Segment BrkFreeStore

Thread Thread

Process

Reservoir
Pa

g
e

Ta
b

le

Reservoir

Reservoir

Reservoir

Shared Memory
Segment

MMapFreeStore

Process-
Group

Figure 4.3 APA free store management classes

Interface 4.6 class FreeStore

class FreeStore
{
public:

virtual ˜FreeStore();

virtual void* allocate(unsigned int lengthInPages) = 0;
virtual void free(void*) = 0;

size_t pageSizeOf() const;

int contains(const void*) const;
...

};

66

store hierarchy to free objects back into the correct region when the application does not

provide this information.

FreeStore is an abstract class; concrete classes derived from FreeStore provide

services for a particular operating system interface. The APA currently supports free stores

for memory allocated using the Unixbrk() andsbrk() system calls (BrkFreeStore),

for memory allocated using the Unix mmap() system call (MMapFreeStore), and for

memory allocated using the Unixbrk() call and shared using the Encore Multimaxshare()

call (ShareFreeStore).

4.2.2 Page table

Because FreeStores do not support arbitrary deallocation or provide a thread-safe

interface, another interface layer is necessary to manage lists of pages and which can be

safely used in a multi-threaded applications. The PageTable object provides this func-

tionality. The PageTable interface is shown in Interface 4.7.

One PageTable is allocated for each FreeStore. A PageTable keeps an array

of page descriptors that encode information on the state of each page: whether it is free or

allocated and, if allocated, how it was allocated. This last feature is used by Reservoirs,

which are described in Subsection 4.2.3. Although the PageTable has a few critical re-

gions to prevent chaotic behavior, it has been optimized for performance. Since most ac-

cesses to the PageTable do not modify the state of the table, the PageTable object dif-

Interface 4.7 class PageTable

class PageTable
{
public:

PageTable(FreeStore&,
size_t initialFreeStoreSize = 512 * 1024,
unsigned char minimumGrowth = 20,
unsigned char maximumOverSuppy = 50,
unsigned int minimumGiveBack = 8);

virtual ˜PageTable();

void* pageAllocate(unsigned int numberOfPages, Pool* = 0);
void pageDeallocate(void*);

Pool* poolOf(const void*) const;
...

};

67

ferentiates between read and write access and allows concurrent access to multiple readers.

Since access to the underlying free store to request pages generally requires a system call,

the page table overallocates pages in an attempt to have pages on hand to satisfy subse-

quent requests. The characteristics of this algorithm can be customized via parameters to

the PageTable constructor.

4.2.3 Reservoir

PageTables support only allocations in multiples of the page size, and a critical sec-

tion is required for most operations. Therefore, an interface is required to efficiently handle

large numbers of small and medium size objects. The Reservoir class fills this require-

ment. A Reservoir contains a number of pools of equal size objects. Since most of the

Interface 4.8 class Reservoir

class Reservoir
{
public:

Reservoir(PageTable& pageTable,
int linStep, size_t linTop, size_t expTop=-1,
int linGrowthRate=10, int linInitCapacity=128,
int expGrowthRate=0, int expInitCapacity=16);

˜Reservoir();

void* allocate(size_t);

void free(void*); // deallocation and
void free(void*, size_t); // reallocation: safe
void* reallocate(void*, size_t);

void privateFree(void*, size_t); // deallocation and
void* privateReallocate(void*, size_t); // reallocation: private

// (local data only)

int manages(const void*) const;

int disableTracking(); // turn on/off object
int enableTracking(); // counting: use around

// calls that allocate
// memory but don’t
// free it

....
};

68

time there are unused objects in a pool, allocation for most cases is very fast. The interface

of the Reservoir class is shown in Interface 4.8.

Although reservoirs handle pools of equal size objects, a pool is not created for every

unique object size represented in an application. Instead, requests for objects of a size not

pooled are satisfied by an object of the next larger size. Reservoirs uses a three-segment

scheme to map requested sizes to allocated sizes, as shown in Figure 4.4. For small objects,

the size of the returned segment is the next larger multiple of a small value. In the expo-

nential region, the size returned is the smallest power of two that will hold the object. In the

last region, the request is converted into the equivalent number of pages and is filled exactly.

The characteristics of the pool allocator were designed based on the patterns of allocation

common in VLSI CAD problems but should be equally applicable to other large problems.

Unlike FreeStore and PageTableswhich have only once instance for each unique

address space, everyThread has aReservoir instance for every free store. Mostmalloc-

like operations are handled within a thread’s own Reservoir instances, and this access

does not require a critical section. Only when a free store operation involves the Free-

Store, PageTable, or another thread’s Reservoir is the use of a critical section re-

quired. Since allocation always occurs from a thread’s own reservoir, only deallocation is

an issue. Memory is always returned to the reservoir from which it was allocated; there-

fore, if an object is freed from a processor other than the one on which it was allocated,

a critical section must be invoked. Moreover, an application may not know the source of

Requested Size

Allocated
Size

Linear
small step

Exponential

Linear
large step

Figure 4.4 Reservoir size mapping

69

a particular object to be freed. In these cases, the normal free() and reallocate()

members are used. These operations query the page table to determine the thread that owns

the page within which the object is allocated and then invoke a critical section if the ob-

ject was remote. If application semantics ensure that the object to be freed was allocated

on the local processor, privateFree or privateReallocatemay be called. These

routines neither check the source of the object (unless debugging is turned on) nor invoke

a critical region.

4.3 Communication Management

The final portion of the APA provides the interface necessary to support interprocess

communication. Abstractions are providedSemaphores,Networks, and Datagrams.

For network protocols in which delivery is unreliable, the APA implements reliability.

4.3.1 Datagram

Datagrams are objects that manipulate contiguous sequences of bytes during network

operations. Figure 4.5 shows the conceptual structure of datagram objects. The Datagram

class interface is shown in Interface 4.9. The datagram is actually an object that points to

a contents buffer that may have unused space at the beginning. As the datagram is passed

down through levels of protocols, headers are added to the beginning as required by the

protocol. Space for these headers is allocated from the unused portion at the beginning of

the contents buffer. If there is insufficient space to service a request to add header bytes, a

new contents buffer is allocated with unused header bytes, and the contents of the old buffer

are copied into the new larger buffer.

Datagram

Datagram contents

UsedFree

Figure 4.5 Datagram layout

70

Interface 4.9 class Datagram

class Datagram
{
public:

Datagram(void* pData, size_t length, void* pPacket = 0);
Datagram(Datagram&);
˜Datagram();

Datagram& operator = (Datagram&);

void* disownContents();

void* addHeader(size_t);
void* removeHeader(size_t);

....
};

To construct a datagram, two values are required: a pointer to the beginning of data and

a data length. If the creator has preallocated free space at the beginning of the buffer in ex-

pectation of added headers, the start of the contents buffer can be passed as a third argument.

The datagram ‘adopts’ the object pointed to when the data is constructed; the datagram will

free the memory space when it is deleted. The disownContentsmember can be used to

retrieve the contents of the datagram while at the same time transferring responsibility for

freeing the contents to the caller.

By preallocating buffers with header space, applications can reduce or eliminate copies

required when messages are sent. The APA preallocates a small amount of header space in

Value types (Section 5.1.3) and thus does not have to copy message contents when mar-

shaling is not required.

4.3.2 Semaphore

The Semaphore class provides a uniform interface to spin-lock style semaphores on

machines supporting some form of shared memory. The Semaphore class interface is

shown in Interface 4.10. Similarly, ReadWriteSemaphores provide separate read and

write locks; multiple reader locks are allowed at one time, while a write lock ensures exclu-

sive access.

In addition to the normallock and unlock operations, Semaphores provide a state-

based interface based on the Guard class. Instances of a Guard class guarantee exclusive

access for exactly their lifetimes. For example, typically a PageTable member function

71

Interface 4.10 class Semaphore

class Semaphore
{
public:

Semaphore();
˜Semaphore();

void lock();
void unlock();

class Guard { // use to lock/unlock critical sections
public:
Guard(Semaphore&);
˜Guard();
...

};
...

};

locks the page table for the duration of a member call. Rather than execute separate lock

and unlock functions, a guard object is used:

PageTable::function(...) const
{

ReadWriteSemaphore::ReadGuard guard (accessSemaphore);

// Since guard is live during the call to unsafeFunction, the state
// of the PageTable will not be changed (or examined) by other
// threads for the duration of the call.

return unsafeFunction(...);
}

The guard object locks accessSemaphore in its constructor and unlocks it in its de-

structor. Unlocking within the destructor eliminates the chance that a semaphore will be

left locked. This idiom is a direct application of resource acquisition is initialization [54].

For performance reasons, the necessary indivisible read-modify-write operations forSe-

maphores are implemented in assembly code on those machines for which they are nec-

essary. Moreover, the Semaphore class is not an abstract class; a single implementation

is chosen when the library is compiled. In this case, the overhead of dynamic binding is of

particular concern, and the benefits of polymorphism are questionable.

72

4.4 Configuration Management

The Machine and Network classes provide abstract interfaces to underlying hard-

ware. They have interfaces sufficiently flexible and recursive to describe almost any inter-

connection of machines. Because all machine classes have the same interface, client code

is not dependent on the particular machine architecture. While Machine instances are vis-

ible to application code, they are primarily used to implement configuration of the thread

management classes.

4.4.1 Machine

The primary responsibility of the Machine class is the management of machine con-

figuration, initialization, and destruction. The interface of the abstract Machine class is

shown in Interface 4.11. Most of the functions in the machine interface mirror those in the

logical Cluster class. However, where in the Cluster class these functions simply re-

turn the configuration as it exists—possibly with reference to the Machine object—the

same functions in the Machine objects must determine the necessary information without

resorting to APA information. Thus, the derived Machine classes are the focal points for

machine-specific data and are the focus of most consideration when a new port of the APA

is generated.

Interface 4.11 class Machine

class Machine
{
public:

unsigned int numberOfProcessGroupsOf() const;
unsigned int numberOfProcessesOf() const;
unsigned int numberOfThreadsOf() const;

unsigned int threadToProcessGroup(unsigned int) const;
unsigned int processGroupToThread(unsigned int) const;

static Machine* newObject();

#if DISTRIBUTED
virtual Network& thisNetwork();

#endif // DISTRIBUTED

};

73

The Machine object to be created is chosen by the static newObject() member.

Currently, this function must be selected at compile time, though the function itself may

do run time configuration.

Current machine classes are the Machine abstract base class, IPSCMachine for Intel

iPSC and Paragon computers, CM5Machine for Thinking Machines CM-5, UnixMPMa-

chine for shared memory Unix machines where sharing occurs in only a single segment,

and UnixMTMachine for shared memory Unix machines where entire address spaces are

shared.

4.4.2 Composite machines

One machine class, CompositeMachine, reflects no particular physical machine but

instead reflects a composite machine made up of separate physical machines joined by an

external network. When a composite machine is constructed, the CompositeMachine

initialization code selects the proper leaf machine and network types and creates them. Cur-

rently, theCompositeMachineclass supportsUnixMPMachines connected via aUDPNetwork.

This configuration supports clusters of workstations in which individual workstations may

be multiprocessors.

Aside from support for networks of shared memory machines, the most significant dif-

ference between the composite machine interface and other existing systems supporting

workstation clusters is the meta-machine model used to design both the program and user

interfaces. In the meta-machine model, when multiple physical machines are aggregated to

create an abstract machine, a meta-machine is created. The meta-machine must be booted

like a physical machine, can run multiple processes, and has a single console that is similar

to serial machines. The meta-machine is booted via a single command, metaboot, which

instantiates meta-machine processes on each physical machine and waits for applications to

make requests to be run on the meta-machine. When an application withCompositeMachine

support is run, it first attempts to contact the meta-machine server to obtain configuration

information. If this attempt fails, it falls back to using the physical machine interface, cur-

rently UnixMPMachine.

The goal of the meta-machine interface is to perturb the existing serial model as little

as possible. For example, in the common serial model, every program starts with two out-

put streams, stdout and stderr. If we wish to maintain our experience with serial pro-

grams, these streams should be maintained. The composite machine attempts to support the

most useful extrapolation of serial abstractions. In the case of the standard streams, they are

74

reflected back to the process originally started at the command line and are, by default, line

buffered; while output from different processes is intermixed, this intermixing happens only

at line boundaries; therefore, the output remains relatively coherent. Optionally, every line

may prefaced by the processor index that caused the output.

Finally, initialization and termination of composite machines are important, both in terms

of usability and reliability. Processes must start quickly and must halt quickly on exit and

error conditions. The meta-machine provides the former by maintaining meta-machine pro-

cesses on each processor which can quickly fork and load an application when a parallel

application is run. The meta-machine itself uses a more expensive protocol such as rsh to

gain access to the remote nodes, but this is required only when booting the meta-machine,

which is again analogous to physical machines.

Error conditions are detected quickly via an interconnection of TCP sockets that will

immediately signal an error if a process dies unexpectedly. Thus, if the application user in-

terrupts a running program via a keyboard interrupt, all clients are immediately terminated.

Furthermore, if any meta-machine process terminates, all other meta-machine processes and

application processes are immediately terminated, as they would be if a physical machine

crashed.

4.4.3 Network

The Network classes implement a reliable, unordered, complete, datagram intercon-

nection. The interface to the Network class, shown in Interface 4.12, is again similar to

Interface 4.12 class Network

class Network
{
public:

Network(unsigned int numberOfProcessGroups);
virtual ˜Network();

void send(Datagram&, unsigned int toProcessGroup,
unsigned int toThread);

void send(Datagram&);

int receiveReady() const;

Datagram receive();
Datagram receiveIfReady();

};

75

the network operations provided by the Cluster class. Current network classes are the

Network abstract base class, the IPSCNetwork for Intel iPSC and Paragon computers,

and the CM5Network for Thinking Machines CM-5. The Network class interface has

been designed to be hierarchical, as would be required for two Ethernet-connected Paragon

machines, but support for such configurations has not yet been implemented.

4.4.4 IP networks

The APA provides the UDPNetwork class to support meta-machines comprising ma-

chines connected by a network supporting the User Datagram Protocol (UDP) [83], [84], [85].

UDP is a user-level interface to the underlying Internet Protocol (IP) [86], an unreliable

datagram protocol. The UDPNetwork class layers on top of the UDP protocol a reliability

and fragmentation protocol, both required because the UDP protocol is unreliable and has

a packet length limitation of 64,000 bytes. In contrast, the Transmission Control Protocol

(TCP) [87] layers on top of IP both reliability and a byte-stream model including support

for flow control. UDP was chosen as the implementation for several reasons. First, TCP is

a point-to-point protocol; thus, the number of active connections grows as the square of the

number of nodes in the machine. Further, the flow control protocol in TCP was optimized

for two types of applications: interactive terminal sessions and bulk transfer of of data, both

over very large, lossy networks [88]. The characteristics of this flow control are not optimal

in the APA model for which distances are small, bandwidths large, and latency critical. The

stream orientation of TCP means that it does not recognize logical packet boundaries and

thus cannot be optimized for the case when sending the last part of a packet will enable fur-

ther computation on the destination node which cannot occur until a whole packet is trans-

mitted. Finally, because TCP will not deliver bytes out of order, though several packets may

have been received, the TCP protocol will not deliver those packets until all earlier data has

been received, even if retransmission is required. Since the APA interface does not require

ordered delivery, effort expended on ordering packets may lead to a loss of performance.

Though TCP is not optimal for datagram processing, much of the flow control and recov-

ery theory can be applied with a few adaptations. In particular, TCP uses two window pro-

tocols to deal simultaneously with congestion in the network and receiver buffer limitations.

Both sender and receiver maintain windows into the data stream which indicate the active

range of data; the transmitter will not send data that does not fit within both of these win-

dows. The transmitter maintains the transmitter window information; it receives updated

receiver window information with every data or acknowledgment packet. The transmit and

76

receive window sizes are updated by carefully tuned heuristics [89]. While the whole flow

control system functions as a unit, the primary responsibility for congestion control, i.e.,

not overrunning the available network bandwidth, is held by the transmission window up-

date algorithm, while responsibility for not overflowing the receiver is held by the receiver

window algorithm.

The primary difference between the APA communication model and TCP is the lack

of point-to-point connections in the APA model. Where in TCP the receiver always has a

buffer dedicated to the TCP connection, in the APA the receiver may receive data from many

sources simultaneously. Two alternatives are possible: dedicating fixed buffers to every po-

tential sender, or maintaining a shared pool from which buffers are allocated as needed. The

latter is more flexible in responding to unbalanced communication but makes it impossible

to advertise accurate receiver window information, since any subsequent data from another

source may immediately invalidate previous receiver window estimates.

The window protocol used in the current UDP implementation essentially follows the

TCP protocol [88], with the exception that window sizes are fixed. The receiver window

size is fixed to a large value and the transmit value to a low value, which is calculated based

on the maximum packet size the network can support and the amount of buffer space avail-

able in the kernel socket interface. The retransmission protocol is identical to that of TCP [90],

including delayed and forced acknowledgements. Similarly, the TCP shutdown protocol is

used to ensure graceful shutdown.

4.5 Performance

Much of the originality in the APA lies in expression as opposed to performance. The

most significant low level performance issue in VLSI CAD applications is network com-

munication.

Network communication in the APA takes two forms: a thin veneer above existing ser-

vices provided by MPPs, i.e., the NX library on the Intel Paragon [12], and the UDP network

which provides a full set of fragmentation and reliability features above the underlying UDP

protocol. The network interface incurs no measurable overhead over existing vendor pro-

tocols; nor does it improve on those protocols, although this is possible if high-level vendor

protocols do not provide the performance characteristics required by the target application

characteristics. Improvements in vendor protocols have not yet been investigated. In the

rest of this section, we consider message passing on the UDP protocol.

77

Tables 4.1 and 4.2 show communication round-trip latency and bandwidth on an IP net-

work for the APA and several workstation cluster message packages [91]. TCGMSG [92]

uses static TCP sockets which created at the time the program is started. In the configu-

ration tested, p4 [93] and PVM [14] both use dynamic TCP sockets which are created on

demand at first communication. The application under test is a simple program that sends a

packet to a single other node which immediately sends the packet back. This procedure was

repeated 100 times, and the mean, variance, minimum, and maximum elapsed times were

calculated. The configurations for testing were slightly different between the APA and the

other systems. The APA experiments were done on two SPARCstations 2s connected to a

lightly loaded Ethernet; the workstations had normal system background tasks running. The

Table 4.1 Round-trip latency for IP message passing

Message Size Latency (ms)
(bytes) APA TCGMSG p4 PVM

mean variance min max����� ����� �	�
� ���
� �����
� ����� ����� ���
�
����� ����� ����� ����� ���
� ����� ���
� ���
�
������� ���
� ���
� ���
� ����� ����� ����� ���
�
������� ������� ���
� ������� ������� ������� ������� �����
�

��������� �����
� �����
� ������� �������
� ������� ������� �	���
�
��������� ������� �����
� �����
� ��������� ������� ��������� ���	�����
����������� ����� ����� �������
� ������� ��������� �������
� ���������
����������� ������� ������� ��������� ������� �������
� ����������� �����������

������������� ������� ������� ������� ������� ����������� ���������
� ���	�������

Table 4.2 Bandwidth for IP message passing

Message Size Bandwidth (Kb/sec)
(bytes) APA TCGMSG p4 PVM����� ������� ������� ������� �������

����� ��������� �������
� ��������� ���������
������� �������
� ��������� ��������� ���������
������� ��������� ��������� ��������� �	�������

��������� ��������� ��������� ��������� �	�������
��������� ��������� ������� �������
� �������
�
����������� �	������� ��������� �������
� ���������
����������� ��������� ������� ��������� ���������

������������� �������
� ������� ��������� ���������

78

other systems shown were tested on SPARCstation 1 workstations on an isolated Ethernet.

The tables show that the APA performance results are comparable to those of the other sys-

tems up to the socket buffer size in the kernel, limited to 50,000 bytes under SunOS 4.1.3.

Beyond this point, the transmitter overruns the receiver, and packets are dropped leading

to a drop in performance. The effect of packet dropping is clearly observable in the statis-

tics; while the minimum latency values are competitive with the other systems, the maxi-

mum value jumps to over two seconds, the APA retransmit time (adopted from TCP). The

dropped packets result in a significant increase in both the mean and variance of the trans-

mission time.

Packet dropping is caused by the lack of receiver windows and asynchronous acknowl-

edgements in the APA. Furthermore, because TCP is integrated into the kernel, service la-

tency for network traffic is much lower than in the user-level APA case. Only a limited

amount of tuning has been performed on UDP network interface; it may be possible to im-

prove performance by adjusting transmitter window sizes and acknowledgement and re-

transmission timeouts. Other characteristics of the APA algorithm could be varied as well.

For example, under SunOS when a new packet comes in and the kernel buffer for the socket

is full, the new packet overwrites the older packet, effectively dropping the older packet in

favor of the newer. The protocol in the APA—adopted as it is from TCP—is not tuned for

this case. Therefore, it is possible to tune the APA algorithm to detect the case in which

overrun is occurring and to take action to reduce the flow of data. Another potential method

for improving performance is the use of interrupt-driven I/O to decrease service latency. It

may not be possible to achieve latency comparable to kernel-service, which might require

resorting to a kernel protocol such as TCP.

We conclude this chapter with an evaluation of the design and implementation of the

APA, followed by a review of other systems with similar functionalities.

4.6 Evaluation

4.6.1 Expressibility

The parametric expressibility of the APA thread management model can be demonstrated

by considering the mapping of contemporary architectures to the model. Table 4.3 shows

the number of each type of thread management object for a number of common parallel

architectures. The first number in each triple represents the number of ProcessGroups

per Cluster, the second represent the number of Processes per ProcessGroup, and

79

Machine APA Configuration
Figure 4.1 architecture 3/2/3

16 node Intel iPSC 16/1/1
4-processor Sun 4/600MP 1/4/1

Two 4-processor Sun 4/600MPs 2/4/1
connected via Ethernet

Intel 64 fat node Paragon 64/1/4

Table 4.3 APA triples for various machines

the last represents the number of Threads per Process; the total number of threads in

the abstract machine is the product of the triple elements. Of particular interest are the last

two rows in the table, an IP-connected pair of Sun multiprocessors and an Intel Paragon

with fat nodes; the Paragon is a mesh-connected multicomputer; when configured with fat

nodes, each node contains four processors sharing a single memory module. In contrast to

most previous work, the APA represents machines that are hybrids of shared and distributed

memory architectures. The APA is not restricted to architectures that can be expressed by

triples of the form above, e.g., uniform numbers of Processes per ProcessGroup.

4.6.2 Factorization

The design of the APA interface has enabled aggressive factorization of the implemen-

tation code. Table 4.4 gives the total number of lines of code in the APA and the number

of lines of machine-specific code for several configurations. The goal of factorization is to

share code to the greatest extent possible without violating the constraint that the factoring

process not contribute significant overhead. Factoring common code facilitates portability

by minimizing the amount of code that must be changed to support new operating system in-

terfaces. It also facilitates maintenance; since code is not duplicated, when errors are found

Table 4.4 Lines of code in APA

Machine Lines of Code
Encore Multimax 357
Intel iPSC/2, iPSC/860, & 610
Paragon
Sun SPARC 117
APA Total 13 800

80

it is not necessary to search for the same error in every copy of the code. Finally, factor-

ing facilitates optimization, since the optimization of a segment of shared code benefits all

clients.

4.6.3 Optimization

A primary goal of the APA design was an interface which provided multiple access

points, which allows client code to trade generality for performance. For example, the APA

provides generic memory allocation service via the C malloc() and free() functions,

or the equivalent C++ ::operator new() and ::operator delete() functions.

These operations must do a number of tests to determine the size of the object being allo-

cated or deallocated and whether the the objects are or should be in shared or private mem-

ory. In cases in which the semantics of the program statically define what these values must

be, Reservoir member functions can be used directly, bypassing those checks that are

no longer necessary.

4.6.4 Limitations and extensions

In the remainder of this section, we consider limitations of the current interfaces. We do

not consider issues that are particular to the current implementation and thus are of limited

value to others.

4.6.4.1 General

The most significant abstraction missing from the APA is a representation of proces-

sor performance and load. For homogeneous machines running in a batch mode, where a

program has exclusive use of all resources, measuring performance and load is generally

noncritical. However, in environments in which neither homogeneity nor exclusivity exist,

it is difficult to balance load to achieve good processor utilization. With a growing number

of heterogeneous workstation clusters and specialized machine architectures, e.g., the Cray

3/SSS, a method for representing load and performance would find immediate use.

The issue of performance has been considered during the course of this research, not

so much to propose a solution, which is beyond the scope of this work, but to ensure that

the solutions developed would not restrict or preclude addition of load information in the

future. Based on the success of the factorization of the APA into separate logical compo-

nents, the thread management classes, and physical components, the machine classes, we

81

envision extending the APA to three major dimensions; logical, physical, and performance

(Figure 4.6). Each dimension shares information with the others but presents a focused in-

terface. By not complicating the logical dimension with information from the performance

dimension, a high degree of encapsulation would be achieved; client code that is dependent

only on the logical structure of the machine would not be exposed to extraneous details of

performance and load.

4.6.4.2 Datagram processing

The current model of datagrams as contiguous sequences of bytes could be loosened to

support one level of indirection, to allow representation of a list of contiguous segments.

This indirection would increase flexibility and usability without significantly increasing the

number of copies, since in these cases generally only one copy is required. It could also

simplify marshalling routines, since the buffer length would not be needed a priori. Finally,

many modern systems support a writev system call which takes as arguments a list of

contiguous segments. Use of a system call of this type could eliminate the necessity for

copies that are now required.

4.6.4.3 Memory models

The only support for concurrency in shared memory currently is the Semaphore class,

which is sufficient for current shared memory systems that use a fairly conservative co-

Logical
Thread
Process

ProcessGroup
Cluster

ThreadManager

Physical
Machine
Network
Datagram
Semaphore

Performance
Region

Distance
Cost

Reservation

Figure 4.6 APA dimensions

82

herency model. Under these models, different processors generally will not see different

orders of memory operations; while the relative timing of loads and stores may change, all

processors see loads and stores originating from a particular processor in a consistent or-

der. Newer machines have implemented weaker memory models for which processors may

see changes in the order of operations generated by an individual processor. These models

also incorporate new instructions which allow the program to signal to the hardware that

the machine must be brought to a consistent state before progress can continue. The APA

represents none of these low-level issues, and with the lack of commonality in the various

coherency models being developed, it is unclear whether a single interface could be devel-

oped.

4.6.4.4 UDP Support

The most significant divergence between the TCP protocol and the current implementa-

tion is the lack of interrupt-based packet processing, which has proven to be a critical issue.

In the current implementation, if the application is not ready to receive a packet, the UDP

network will not receive packets from the network interface. Originally, it was anticipated

that higher-level protocols would poll the network interface sufficiently often. However, the

acknowledgment and retransmission scheme in TCP was developed under the assumption

that the TCP driver would receive and respond to packets within a time much shorter than

any of the protocol timeouts. This difference is exacerbated by the fact that the receiver

window was enlarged to reflect shared resources. In effect, only a few thousand bytes of

data can be delivered if the transmitter and receiver are not attempting to write and read at

the same time. The result is that transmitters often overrun receivers, especially if the ap-

plication is compute-intensive. The solution to this problem, the use of interrupt based I/O,

is relatively straightforward.

4.7 Other Models and Implementations

A significant number of models and implementations have been developed to provide

facility similar to that of the APA. Most previous work has been either for multiprocessors

or multicomputers, but some recent work has addressed the type of hybrids included in this

work.

There has been a significant amount of work done on message passing interfaces. MPP

manufacturers such as Intel and Thinking Machines support propriety interfaces on their

83

machines. Recently, ARPA and NSF sponsored the development of a new standard for mes-

sage passing, MPI. This interface is similar to the MPP interfaces and includes extensions

to improve flexibility.

4.7.1 PVM

Probably the most widely used software for parallel processing is PVM, the Parallel Vir-

tual Machine [94], [14]. PVM enables parallel programs to be run on IP-connected worksta-

tions and on massively parallel machines by using vendor-supplied communication primi-

tives. The library provides C and FORTRAN interfaces for synchronous and asynchronous

message passing and provides support for heterogeneity of processing elements, both in data

representation and processing power. Included tools provide particularly strong support for

machine configuration, debugging, and performance analysis.

A program running on a PVM machine has a number of processes on each CPU and

one pvmd daemon process on each node. In the default communication mode, interclient

communication occurs via TCP sockets to the daemon on the local node, via UDP between

daemons on the source and destination nodes, and again via TCP between the daemon and

client on the destination node. The user may elect to route messages directly in some imple-

mentations. When this option is chosen, point-to-point TCP connections are made between

clients that wish to communicate.

In addition to raw communication, PVM provides support for groups of tasks, and some

implementations now support message passing via shared memory segments, though these

segments are not exported through the interface to client code. Recent work has reported

experiences adding user-level threads to PVM [95]. PVM does not provide direct support

for shared memory, synchronization, or memory management.

4.7.2 p4

Developed at the Argonne National Laboratory, p4 [93] provides a send-receive model

on workstation clusters via TCP sockets. The p4 library is a thin layer above the socket in-

terface, which generally reduces problems of initialization and shutdown. The p4 interface

also provides shared memory primitives on machines that provide them but does not pro-

vide support for memory management within those primitives. The library p4 includes a set

of reduction primitives similar to PVM.

84

4.7.3 TCGMSG

TCGMSG [92] provides a send-receive model on various MPP and IP-connection work-

stations. On IP-connected machines, TCP is used as the transport protocol. On MPPs, the

native operating system calls are used. On multiprocessors supporting shared memory, mes-

sage passing is done via shared memory.

4.7.4 MPI

MPI [13] is a standard interface with message passing functionality. It is an inclusive

standard that includes virtually all styles of send-receive communication, support for group

protocols, reductions, and noncontiguous data structures. The APA does not provide the

complete set of features available in an interface such as MPI. However, since the APA pro-

vides a standard interface to both shared memory and message passing, it would be moder-

ately easy to implement an MPI interface on top of the APA. One of the more interesting as-

pects of such an implementation would be support for message passing primitives on shared

memory architectures which is straightforward when the APA is used but rare in other im-

plementations. Moreover, support for hybrid machines would be automatic.

85

Chapter 5

META-PROGRAMMABILITY

The Actor Interface has been designed to provide a high degree of meta-programmability

by providing an open implementation, also called a reflective interface [96]. Meta-program-

mability refers to the ability to ‘program’ the actor model, i.e., to be able to specify aspects

of the operation of the run time library. For example, the actor model specifies that contin-

uations are unordered, that they may be scheduled in an arbitrary order. Through the meta-

programming interface of the AIF, an application can influence the order in which continu-

ations are executed.

In addition to local influences such as scheduling, an application may require a global

control of the operation of the system. For example, in [97] a reliability protocol is devel-

oped for providing fault tolerance in actor systems. The AIF supports global meta-programmability

via a meta-circular, open implementation. Run time support is implemented via a number

of library-supplied aggregates that perform operations such as continuation scheduling and

name resolution. By deriving and instantiating an application-specific type from a system

aggregate type, the run time can be extended to support new protocols and features.

5.1 Local Meta-programmability

Local meta-programmability encompasses per-class meta-programmability, i.e., the abil-

ity to influence the operation of the actor system on a class-by-class basis. Local meta-

programmability is important when viewed from the criteria of composability. If all meta-

programmability features are implemented as global, aggregation of program modules is

restricted to the case in which those modules utilize only compatible features.

86

The local meta-programmability features of the AIF are prioritized scheduling, first class

continuations, first class values, aggregate distributions, and aggregate representative selec-

tion.

Before discussing the meta-programmability features, we require a new concept, gen-

erally one not explicitly manipulated in an actor system. The new object is a task [51], an

object representing an executable context. A task is created when a continuation is called;

it is a combination of a continuation and the arguments to the continuation, which is analo-

gous to a function pointer in the serial, procedural case. Just as a function pointer requires

a set of arguments before a call can occur, a continuation requires an argument before it is

considered an executable entity. In the AIF, calling a continuation with an argument creates

a task, represented by the AIF class Task, which the the run time system then schedules

for execution.

5.1.1 Prioritized scheduling

The pure actor model does not specify an ordering on the execution of tasks; it guar-

antees only fairness [51]. This characteristic implies one of two choices: the application

must implement a scheduling protocol that guarantees that tasks are created in such an or-

der that progress is made on the computation, or that the run time system is responsible for

determining an ordering of tasks which results in acceptable performance. Both of these

alternatives suffer from significant drawbacks. In the former case, each application must

include a scheduler, which implies both a significant degree of duplication of effort and a

loss of composability, since the scheduling is being done on an application basis rather than

on a per-class basis. The latter case, in which the run time system determines the order, is

infeasible in general without communication between the application and the run time con-

cerning the relative importance of tasks.

Our approach to solving this problem is to address the latter aspect, the lack of commu-

nication between the application objects and the run time scheduler. The run time system

defines a priority interface from which the programmer can define new priority types. Pri-

orities can have total or partial orderings among them. Each priority also may specify task

queue types that the run time uses to store and schedule tasks. The foremost goal of the

priority system design was a system that supports composable priorities, i.e., an interface

that can be used in modules in any manner required by the application without sacrificing

the ability to compose modules together. The run time system uses the priority interface in-

87

ternally to ensure that information required to support the general model is communicated

with the appropriate precedence.

5.1.1.1 Task queues

Tasks are managed by the run time in a priority-defined hierarchical set of queues (Fig-

ure 5.1). The task queue interface is shown in Interface 5.1. The add member is called to

add new tasks to the queue, while the remove member is called to dequeue and return the

highest priority task in the queue. The library currently provides two predefined queues of

tasks,Deque<Task> andPriorityQueue<Task>, and one queue of queues, OrderedSet<TaskQueue>.

The latter uses the priorityOf member of the task queue interface to implement hierar-

chical queues of queues. Queues of queues and the priority value protocol, described next,

are used to implement an extensible, composable, interface.

Double Ended
Queue of Tasks

Priority Queue of Tasks

Ordered Set of
Task Queues

System
User

Quiesce

Method
New
Test

Ordered Set of
Task Queues

Figure 5.1 Task queues

Interface 5.1 class TaskQueue

class TaskQueue
{
public:

TaskQueue(const Priority&);
virtual ˜TaskQueue();

virtual void add(Task&) = 0;
virtual Task remove() = 0;

virtual int isEmpty() const = 0;

virtual const Priority& priorityOf() const;
...

};

88

5.1.1.2 Priority values and comparators

Priority values, used to order the elements within a task queue, are defined using deriva-

tion and a class-by-class total or partial order. Figure 5.2 shows the priority classes pro-

vided by the actor interface with an additional priority used by the test generator described

in Chapter 6. The ‘¿’ signs show the relative precedence of priorities. The priority value

system is in essence a lexicographic scheme with a heterogeneous set of symbol types. Fig-

ure 5.3 shows an example of how comparison occurs between two priorities of different

classes. Priorities comprise a sequence of symbols, and all priorities with a common prefix

must be comparable. Thus, in the figure the longest common prefix is the single symbol

UserPriority, and there must be a partial or total ordering in the next symbol in the

sequence. In this case, the next symbol differs and therefore the partial order is complete:

task A has higher priority than task B. Because no further comparison occurs, the fact that

the task B has additional priority information is of no consequence. If task A had also had

Priority

System User Quiesce

Method New

> >

> Test>

Figure 5.2 Priority class hierarchy for ATPG

Task A:
a default user priority
task

UserPriority

Task B:
an ATPG Task UserPriority ATPG-specific priority dataTestPriority

Longest common prefix

First unequal value:
must be comparable

Succeeding values:
need not be comparable

MethodPriority

Figure 5.3 Heterogeneous lexicographic priorities

89

TestPriority as its second symbol, the comparison would have continued, based on

data in the ATPG-specific portion of the priority value.

Heterogeneous lexicographic priorities are implemented via a pair of coupled interfaces,

Priority andPriorityComparator, presented in Interfaces 5.2, and 5.3 respectively.

Priority comparator classes determine two properties: where the priority classes fit within

the derivation tree, and the ordering of objects lower in the tree.

The unary compare function is used to determine the queue within which to enqueue a

new task. For example, the unary compare for the TestPriorityComparator class,

is defined as

int
TestPriorityComparator::compare

(const PriorityComparator& queueComparator)
{

if (dynamic_cast<TestPriorityComparator*>(&level)) {
// The queue uses a TestPriorityComparator so this is
// the correct queue.
return 0;

} else {
// Let the class above in the derivation tree make
// the decision.
return UserPriorityComparator::compare(queueComparator);

}
}

Interface 5.2 class Priority

class Priority
{
public:

virtual ˜Priority() = 0;
virtual PriorityComparator& comparatorOf() const;

virtual TaskQueue* newTaskQueue(const Priority&) const;
...

};

Interface 5.3 class PriorityComparator

class PriorityComparator
{
public:
virtual int compare(const PriorityComparator&) const;
virtual int compare(const Priority&,

const Priority&) const;
};

90

The binarycompare function is used to determine the relative order of tasks and queues

within a queue. For the test queue, this function simply returns the result of comparing the

bit vectors in the priorities (Chapter 6).

The ability to prioritize tasks has proven instrumental in the parallelization of CAD al-

gorithms [1] and other applications [74] even when restricted to homogeneous priority rep-

resentations [69]. It is anticipated that support for heterogeneous priorities will facilitate

aggregation of modules that require conflicting representations, as is the case for Proper-

HITEC in Chapter 6 and ProperPROOFS in Chapter 7.

5.1.2 First class continuations

Because continuations are first class, i.e., can be copied and manipulated by application

code, a wealth of concurrent control structures can be represented [5]. The continuation

interfaces were considered in detail in Chapter 3 and are not repeated here.

5.1.3 First class values

The actor model is call-by-value, i.e., parameters to method invocations are copied, as

shown in Figure 5.4. In CAD and other medium-grain applications, the cost of copying an

argument can be considerable. In these cases, it is desirable to be able to access the actual

value—the actual storage location—to be used in a continuation call. For this functionality,

the AIF provides first class value types. First class values or very similar abstractions are

called messages in both Concurrent Aggregates [5] and Charm [69]. We will prefer the term

value to message as it helps distinguish the values and tasks in the actor model from the

messages of send-receive models.

First class values are represented by the library class Value (Interface 5.4). Each value

type is a container of a single instance of the template type parameter. Values are manipu-

lated by the application by defining actor methods which take a Value<Type> as an ar-

gument. Using first class values, the actor method declaration

void ActorType::MethodName(ArgumentType);

would be replaced with

void ActorType::MethodName(Value<ArgumentType>);

In general, value types can be used anywhere an object of the template parameter type can

be used.

91

Call Site

Call Argument Method Parameter

Method
Executed

Run Time

Application

Copied Argument

Call Site

Value<Type> Argument

Method
Executed

Run Time

Application
Value<Type> Parameter

Call-By-Value

First Class Values
Figure 5.4 Call by value and first class values

Interface 5.4 class Value

template <class Type>
class Value : public Value<Generic>
{
public:

Value();
Value(const Type&);
Value(Value<Type>&);
˜Value();

Value<Type>& operator = (Value<Type>&);

virtual Value<Type> copy() const;

void* at();

operator Type& ();
operator const Type& () const;

...
};

92

By using first class types, an application gains control over the scope of the object. For

example, if an object calls a continuation with an object

Argument arg (... /* Argument constructor parameters */);
ActorType::MethodName::Continuation(name)(arg);

a copy of the argument arg occurs. Because the value sent to the method invocation is

constructed within the run time, the application must construct an object, copy it via the

continuation call, and then destruct the original. When first class values are used, the copy

can be eliminated by constructing the value used by the run time

Value<Argument> value;
new (value.at()) Argument (...);
ActorType::MethodName::Continuation(anActorName)(value);

The example calls the value at() member to extract the address of the buffer of the un-

constructed object within value and then uses the C++ placement new syntax to construct

the argument in place. Finally, the value is passed to the continuation.

In a similar manner, the scope of the object can be lengthened at method invocation time.

When an actor method is defined with native types, e.g.,

void
ActorType::MethodName(const Argument& arg)
{

...
}

the scope of the object referred to by arg is the duration of the function call. Any pointer

or reference to arg stored becomes dangling after MethodName returns. If, instead, the

method is defined to take a Value instance:
void
ActorType::MethodName(Value<Argument> arg)
{

...
}

the scope of the argument can be lengthened by copy constructing or assigning the parameter

to another value object

Value<Argument> save;
void
ActorType::MethodName(Value<Argument> arg)
{

save = arg;
}

The scope of the value now becomes the scope of the assigned value, in this case, file scope.

Copy construction, assignment, and continuation calls all consume Values; trying to ac-

cess the contents of a Value object after it has been consumed results in an exception.

93

First class values are usually handled completely within the library, but for reasons of

efficiency, flexibility, and resource management, the may be manipulated by the application

explicitly. First class values are most often used in CAD applications when data structures

are distributed, i.e., the data representing the circuit. Copying of this data takes a significant

amount of time and may limit the size of problems that can be addressed, since an extra copy

implies that there must be memory available to hold two copies of the circuit.

5.1.4 Aggregate distributions

The original aggregate model allows the specification of the number but not the place-

ment of the representatives aggregate [5]. In medium-grain applications, placement of rep-

resentatives can be crucial to achieving acceptable performance. In addition to performance

issues, the ability to conditionally coerce aggregate names to object pointers exposes ag-

gregate distribution to the application in a way not present in the original model that uses a

uniform address space model.

The AIF supports descriptions of aggregates via the library classDistribution, shown

in Interface 5.5. Distributions specify the number and location of representatives of an ag-

gregate. The interface of the abstract Distribution class is general enough to express

both enumerated and algorithmically computed distributions. Distributions are bound to

aggregates via an optional argument supplied when NewActorMethod continuations for

Interface 5.5 class Distribution

class Distribution
{
public:

Distribution();
Distribution(const Distribution&);

virtual ˜Distribution();

virtual int numberOfRepresentativesOf() const = 0;

virtual int numberOfRepresentativesOnThisThread() const = 0;
virtual int indexOfThreadRepresentative(int) const = 0;

virtual int numberOfRepresentativesInThisProcess() const = 0;
virtual int indexOfProcessRepresentative(int) const = 0;

virtual int numberOfRepresentativesInThisProcessGroup() const = 0;
virtual int indexOfProcessGroupRepresentative(int) const = 0;

};

94

aggregate types are created. If no distribution is supplied, one representative is created on

every thread.

The AIF provides three standard distributions based on the APA, PerThread, Per-

Process, andPerProcessGroup. Aggregates created with these distributions will have

one representative for each of the related APA objects. Since the APA configures itself au-

tomatically when an application is invoked, no further user code is necessary. PerThread

distributions may be used to represent data private to individual threads; member functions

and data of representatives in aggregates created with PerThread distributions can be ac-

cessed by other actors allocated to the same thread without the possibility of race conditions.

In this way, PerThread aggregates find their most common use in task and data parallel

models. PerProcessGroupdistributions are often used to represent read-only or, in con-

cert with the use of Semaphores, write-rarely data. 200z The availability of APA-based

distributions is an example of the trade-off between expressibility and generality. In some

respects, the ability to specify location of aggregate representatives and the ability to condi-

tionally resolve actor and aggregate names to object pointers represent a weakening of the

high-level actor model. However, many medium-grain applications require or benefit from

some amount of architecture-specific customization, even if this customization consists of

simply copying data into all address spaces in a distributed memory machine. This func-

tionality is so commonly required that making it difficult would serve no purpose except to

limit the usability of the interface, which would result in applications bypassing the actor in-

terface and dealing directly with the APA. While the complete APA interface is available to

actor applications, it is desirable to regularize common architecture-specific optimizations,

thus reducing the need to reinvent these algorithms numerous times.

5.1.5 Actor and aggregate placement

The location of an actor or an aggregate may be selected by the application by an op-

tion argument to the new method continuation constructor. In the absence of the argument,

placement is random. Aggregates may have meaningful placements if the size of the aggre-

gate does not encompass all processors in the system.

5.1.6 Representative selection

The original aggregate model specifies random representative selection [5]. In a fine-

grain environment in which aggregates are used solely for their nonserialized interface, this

95

selection may be sufficient. In medium-grain applications in which aggregates are used for

data distribution as well, random selection is often not desirable.

The AIF supports representative selection on a per-method basis. By adding a resolution

function to the nested actor method class, the default resolution, ‘closest’, can be overridden.

For example, in ProperPROOFS, the Simulatemethod is called by the user interface to

begin fault simulation within the fault simulator aggregate. Since the Simulate method

should be called for each representative, the Simulate method is declared as
class Simulate : protected Method<Void>
{

ActorMethodOf(Void);
static AggregateName<FaultSimulatorAggregate>

resolve(const AggregateName<FaultSimulatorAggregate>& name) {
return name.allRepresentatives();

};
};

The resolve function takes as an argument an aggregate name and returns an aggregate

name that is bound to a representative or to all representatives, created byrepresentative()

and allRepresentatives(), respectively.

One of the interesting aspects of representative selection as implemented in the AIF is

the handling of broadcasts. Virtually all systems that handle broadcasts do so by using an

imperative variant of a send operation, which implies that the decision of unicast versus

broadcast is made at the time of continuation execution and is made by the sender. In con-

trast, in the AIF the client is not required to decide whether to use unicast or broadcast,

and often the client is unaware of which mechanism is being used. In our experience with

CAD applications, the construction of the algorithm is generally such that it is the object

on which the continuation is being called that logically holds the responsibility for the uni-

cast/broadcast choice. The lossless coercion of aggregate names to actor names, i.e., with-

out loss of representative selection, should also facilitate incremental parallelization. When

it is determined that an actor has become the bottleneck in a computation, an aggregate with

the same interface can be substituted in its place. Client code that uses actor names still

functions as before with the aggregate implementation.

5.2 Global Meta-programmability

Three library classes work together to support the operations of actor creation and task

routing and scheduling. The Director aggregate controls the thread on each processor,

passing control to individual actors to execute tasks by using the policy described in Sub-

section 5.1.1. The NameServer aggregate maintains actor and aggregate name binding

96

information, resolving names as continuations are called. The QuiescenceDetector

aggregate monitors the state of the abstract actor machine and detects idle conditions.

Global meta-programmability can be achieved by deriving new, application-specific classes

from the library-provided types. These changes are global; they affect all modules linked

with the new class. Such changes are also generally not composable; although it is possi-

ble to use multiple inheritance to combine two application-specific system aggregate types,

such aggregation must be done manually, and the potential complexity of the problem raises

significant doubt as to the feasibility. Because system aggregate customization is global,

the set of conditions under which this type of meta-programmability is applicable is more

specialized. Thus, global meta-programmability generally finds less application than does

local meta-programmability. Thus, while priorities are used by classes to solve modular

problems, derivation of a new Director type is more appropriate to change global sys-

tem properties such as reliability [97], [98], [99]. The Director aggregate also provides

an object-level interface which allows limited customization without the use of derivation.

All system aggregates have PerThread distributions.

5.2.1 Director

TheDirector aggregate, derived from both the AIFAggregate and APAThread-

Manager classes, controls the thread on each processor, maintains task queues, and passes

control to individual actors to execute continuations by using the policy described in Sub-

section 5.1.1. TheDirector aggregate creates and communicates with theNameServer

and QuiescenceDetector aggregates. It informs the NameServer when actors are

created and destroyed in order that name binding information can be updated.

The public interface of the Director class is shown in Interface 5.6. There is no direc-

tor instance in the library; it must be manually declared by the application. Generally, most

actor applications have a simple main() routine that simply instantiates a director object

and then, on one thread, creates a user interface object that drives the rest of the computation

int
main(int, char*[])
{

Director director;

if (director.isFirst()) {
UserInterface::New::Continuation()();

}
}

97

Interface 5.6 class Director

class Director : public ThreadManager,
public Aggregate

{
public:

Director();
virtual ˜Director();

static Director& thisDirector();

void shutdown();
void notifyAtQuiescence(const Continuation<Void>&);

...
};

As the APA ThreadManager object from which it is derived, the Director controls

the thread from within its destructor. The body of main functions as an anonymous ac-

tor method and is generally used to call a continuation responsible for performing the body

of the application. As mentioned in Subsection 4.1.5, the number of times main is exe-

cuted is not defined by the APA; code usually should be conditioned by the isFirst()

predicate inherited from the ThreadManager base class. Actors can gain access to the

director on which they are running by the static thisDirector() call, analogous to the

thisThread() call in the APA.

The director mediates the interface between applications and the QuiescenceDe-

tector aggregate via the notifyAtQuiescence()method. Operation of quiescence

detection is described in Subsection 5.2.3. If the QuiescenceDetector detects quies-

cence with no continuations on the notify list, it informs the director, which performs an

orderly shutdown. The shutdown() method may be called by application code to effect

normal shutdown without regard to quiescence.

5.2.2 Name service

The NameServer aggregate is responsible for coordinating the allocation, distribu-

tion, and resolution of actor and aggregate names within the system. This coordination in-

cludes allocating names that are unique across all processors, routing actor method calls to

the appropriate processor for execution by the Director, and maintaining binding infor-

mation as new actors and aggregates are created.

98

The Director aggregate creates the NameServer aggregate and informs theName-

Server when actors are created and destroyed in order that naming information can be

updated. When continuations are called on actor names that are not completely resolved,

the actor name requests that the NameServer aggregate forward the name by using the

binding information it maintains. The NameServer consults its internal name database

and takes action, depending on the state of the binding of the name. If a complete binding

exists in the database, the forwarded name is updated in place and is re-sent.

If the name is unbound, the task being forwarded is temporarily enqueued within the

NameServer, pending the arrival of binding information. Binding information is added

when a new actor is created; for every actor created or destroyed, the director informs the

NameServer representative. The NameServer protocol never broadcasts names; suffi-

cient binding information is communicated in all requests for the NameServer to maintain

all bindings via unicast continuations. Tasks resulting from continuations called on unre-

solved names are never forwarded to intermediate nodes. Instead, the task is temporarily

enqueued within the NameServer, and, if necessary, a query for binding information is

made to the appropriate NameServer representative. When the binding information is

available, it is returned to the requesting representative which uses it to route the task di-

rectly to the destination thread. Binding information is maintained in order that once a re-

quest has been made, it is not repeated.

The binding information maintained by the NameServer is also used to perform actor

and aggregate name-to-pointer coercion.

5.2.3 Quiescence

The Director aggregate coordinates its action with a quiescence detection aggregate

to determine when the system is idle; i.e., there are no pending tasks. Because the actor

model is event driven, an actor system that has become idle will not change state unless an

outside event occurs. Any actor may pass to theQuiescenceDetector, via theDirector,

a Continuation<Void> instance. This continuation will be executed when quiescence

is detected.

While in many cases convenient, the usefulness of quiescence is debatable in a modular

environment. Quiescence is not a composable property and modules that rely on quiescence

detection are inherently noncomposable. Since quiescence is defined as no pending tasks in

the system, any activity, no matter how innocuous, will keep the overall actor system from

99

achieving quiescence. If a module is written to progress in phases separated by quiescent

states, outside activity can inhibit the module from making progress indefinitely.

A good example of the limits of quiescence detection is the implementation of the quies-

cence detection algorithm itself. The quiescence detector object must hide the tasks imple-

menting the detection process from the process itself, or quiescence would never be achieved.

While quiescence is not composable, it can be used with care on an application level.

The quiescence protocol in the AIF is an extension of that implemented in Charm [100],[101],[102].

However, the AIF implementation of quiescence is open; the ability to hide tasks from the

quiescence detector is provided to applications as well as being used within the detector it-

self. As in the case of representative selection, selective quiescence hiding is provided by

a method function. For example, ProperPROOFS, described in Chapter 7, does fault re-

distribution via a method Split which is hidden from the quiescence detector:
class Split : protected Method<int>
{

ActorMethodOf(int);
static int representsWork() { return 0; }

};

5.3 Evaluation

5.3.1 Prioritized execution

The priority system is general enough to allow composition of modules like the Test-

Generator class from ProperHITEC and the FaultSimulatorAggregate from

ProperPROOFS. A potential problem is the cost of adding tasks to the multilevel queues

which requires a number of operations which scales logarithmically in the number of levels.

This number of operations directly affects the minimum useful grain size on some machines.

While the value of generality for the target applications justifies the cost, techniques for op-

timizing the addition of new tasks would be beneficial.

5.3.2 First class tasks

During implementation of the quiescence detector, the benefit of having first class tasks

available to the application became apparent. Furthermore, since the run time system ma-

nipulates tasks explicitly, an open implementation should provide an application interface.

Currently, with first class continuations, one level of indirection is achieved: an actor can

create a continuation and pass it to client code to execute when a certain set of events oc-

curs. The client code is independent of the actor and the method which will be called, and

100

a degree of modularity is attained. However, the client is still dependent on the argument

type of continuation and must provide the argument when the continuation is called. An

even greater degree of the expression is attained if the the continuation and argument are

combined but not executed; the result is a task (or thunk [103]). An interface to the task

types would improve the expressibility of the system. Some effort has been expended on

developing an interface for tasks; the most significant barrier appears to be the generation

of an interface that is statically type safe.

5.4 Other Models and Implementations

5.4.1 Concurrent aggregates

Concurrent Aggregates [5] provides support for first class continuations and messages.

Continuations in CA take two forms: user, much like those in the AIF, and true continuations

in the sense of encapsulating the complete run time context. Messages in CA fill the role of

both first class values and first class tasks, since they contain both the method argument list

and the name of the target actor.

5.4.2 Charm and Charm++

Charm was one of the first distributed actor models to implement advanced meta-programmability

features, and the Actor Interface incorporates extensions of many of the features in Charm.

The most significant difference in the area of meta-programmability is the emphasis on com-

posability in the AIF.

Charm provides first values, called messages, but does not provide a call-by-value in-

terface; the application may pass only message types and is always responsible for allo-

cating and deallocating messages. Concurrent collections in Charm, called branch office

chares, have a fixed distribution with one representative per thread. Representative selec-

tion is specified at the call point by passing an argument which is either a representative

index or the pseudoindex ALL.

Charm provides several global meta-programming interfaces, selected at the time an ap-

plication is linked. Prioritized execution is chosen at link time by selecting from a set of

priority modules [74]. Since there is only one module per executable, all priorities must be

used uniformly across an application. Supported priority values are integer and bit vector.

Supported queue types are stack, queue, and a deque that dynamically selects head or tail

101

insertion depending on its length. There is no published interface for adding new priority

value types and new queue types.

Charm also provides a globally selectable load balancing module. In addition to random

placement, Charm provides three adaptive load balancing modules. Charm also allows the

specification of manual placement.

102

Chapter 6

PARALLEL TEST GENERATION

Despite concerted effort, automatic test pattern generation for sequential circuits remains

one of the most time consuming tasks in the integrated circuit design process. Experts in

the field of ATPG and integrated circuit manufacturing have expressed concern not only for

reducing run times and improving test coverage but also for the feasibility of maintaining

current levels of performance and quality on increasingly complex circuits.

The potential for the use of increasingly available parallel platforms makes test a prime

candidate for parallelism. Yet, the use of parallelism in solving the ATPG problem remains

inconsequential, even in the face of several proposals for parallel ATPG. This lack of use is

due in part to the fact that many of the algorithms previously produced are tightly tied to a

particular architecture; while parallel platforms are increasing in number, the number of a

particular type is still relatively small.

Much of the difficulty of parallelization of test stems in large part from the inherent ex-

ponential complexity of ATPG. This complexity makes careful algorithm design and imple-

mentation critical; even small variations introduced by the parallelization process can have

a dramatic impact on performance and resultant quality. Many parallel implementations of

ATPG have been developed from the ground up and have diverged significantly from ex-

isting ATPG algorithms, which has produced results that either fail to achieve significant

multiprocessor utilization or suffer from a significant loss in quality.

In this chapter, we present ProperHITEC, a parallel implementation of the HITEC

program for sequential ATPG. In the Section 6.1, we briefly review test generation. In the

Section 6.2, we discuss the organization of the HITEC sequential test generator. In Sec-

tion 6.3 we summarize existing methods and applications for parallelizing test generation.

In Section 6.4, we consider modifications to HITEC necessary to support actor-based par-

allelism. In Section 6.5, we discuss the implementation details of ProperHITEC. Sec-

103

tion 6.6 summarizes the performance of ProperHITEC on a number of circuits in the

ISCAS-89 benchmark set [104].

6.1 Test Pattern Generation

Most computationally intensive CAD problems can be viewed as either search prob-

lems or optimization problems. We consider here test pattern generation, a form of search

problem. Test patterns are sets of inputs to integrated circuits that are applied to fabricated

devices to determine if any defects occurred during the manufacturing process. The output

patterns produced by a device in response to the test patterns are compared against expected

results, and the device is rejected if the patterns do not match. Generating a set of tests that

ensure that no device containing a defect is erroneously flagged as good is extremely diffi-

cult for contemporary chips that contain millions of transistors.

We illustrate with an example. Test generation for a particular fault on a simple chip

might reduce to finding a set of Boolean assignments to inputs � through
�

, such that a func-

tion ��� �����
	��
��������	�����	
� ����	���� is true. The simplest way to find such an input is to

search for one: we start by assigning an input, for example � , to a one. In the example, the

result is ��	��
��������	 �!�"	
� ��� ; therefore, another input is chosen and the process is repeated.

If assigning an input results in �#�%$, that set of inputs is a test. If, however, the result is

�&�(' , this means only that that set of inputs is not a test, not that no test exists, although

this is a possibility. Each of the earlier assignments must be retried with a value of zero.

The problem of finding a set of inputs that yield a one is called satisfiability [105], a

well-known NP-complete problem. Members of the class of NP-complete problems have

the characteristic that the number of possible solutions that must be examined grows expo-

nentially with the number of inputs, making naı̈ve enumeration impossible. Instead, heuris-

tics are used to try to ‘guess well’. In this context, heuristics are mathematical functions

that can be evaluated for each potential guess; higher values indicate better guesses. For

heuristic functions with certain properties, algorithms exist which guarantee optimal per-

formance [106]. The art of search is the art of finding good heuristics.

Given a set of heuristics, the process of parallelizing search is relatively straightforward;

one simply evaluates multiple possible solutions in parallel. When no solution exists, near

perfect speedup is observed. However, when a solution does exist, the effectiveness of the

parallelization effort depends directly on how much extra search is done beyond that neces-

sary in the serial algorithm. If the first solution is nearly always correct, i.e., the heuristics

104

are usually successful, little speedup will be observed, as most processors do unnecessary

work.

6.2 HITEC: A Serial Test Generator

HITEC is a sequential test generation that exhibits performance and quality among the

best known in the field [52]. Following the premises of the ProperCAD project [1], it was

chosen as the basis for development of an efficient and effective parallel test generator. In

this section, we review briefly techniques embodied within HITEC. Through careful exam-

ination of HITEC, we can determine where the application of object-oriented and parallel

mechanisms will introduce inefficiencies, overheads, or constraints that would render the

algorithm ineffective.

Although search is in some respects a regular problem, search as it is manifested in test

generation shows little of this regularity. The most successful combinational and sequential

ATPG algorithms are based on the PODEM algorithm [107], itself a descendant of the D

algorithm [108]. PODEM differs from the D algorithm in the set of potential assumptions

that the algorithm will consider. Whereas the D algorithm will assume values on internal

nodes, PODEM will assume values only on primary inputs, which reduces the number of

backtracks the algorithm may have to execute and accelerates the overall process.

The extension of PODEM to sequential circuits is straightforward. The sequential cir-

cuit is modeled as an infinite iterative array of identical copies of the combination portion

of the circuit. The latch outputs of each time frame form the latch inputs of the next time

frame. The sequential PODEM algorithm starts by considering the ‘time 0’ frame; a D is as-

sumed at the specified fault and a procedure essentially the same as the combinational case

is run. In the sequential case, if a D or D is propagated to a latch input, another time frame

is created, a D is inserted at the fault site in that frame, and fault propagation is continued.

Similarly, if a justification goal reaches a latch output, an earlier time frame is created and

justification is continued in that frame.

HITEC is a descendent of and an extension to the PODEM approach. The extensions,

roughly in decreasing order of significance, are:

6.2.1 Targeted D-frontier

Since the calculation of all implications of an assignment is NP-complete [109], test gen-

eration algorithms compute only a subset of all implications. One way of maximizing the

105

size of this subset is to maintain a ‘D-frontier’, the set of nodes closest to the primary out-

puts that have a D or D value. For each element of the frontier set, the set of dominators

is found; that is, the set of single assignments required to justify the frontier element. The

dominator sets for each element are then intersected; the result of the intersection is a set of

implications that is necessary to justify every possible propagation path to a primary output.

HITEC does not perform the intersection operation. Instead, the frontier element most

likely to propagate to a primary output is identified, and a D or D value is assumed on

that node. The number of implications that can be derived from this assumption is much

greater than the implications resulting from the intersection of every possible propagation

path. However, since a value is being assumed, this operation is a backtrackable decision; if

further processing determines that the assignment cannot be propagated or justified, it must

be backtracked and another element of the frontier chosen. If all elements of the frontier

are exhausted without generating a test, a prior assignment must be backtracked or, if none

exist, the fault is declared untestable because the fault effect is not observable.

6.2.2 State Justification

HITEC breaks into separate processes intraframe and interframe justifications. The de-

termination of a set of implications necessary to justify a value always halts at frame bound-

aries, i.e., the primary inputs and the latch outputs, until all justification objectives for the

current frame are met. At this point, if there are justification objectives on latch outputs,

state justification is performed. HITEC attempts to speed state justification by:

� keeping a list of states, for each fault, which have been proven unjustifiable. State jus-

tification fails immediately if the new state objective is covered in the Boolean sense

by any previously failed state. This method also prevents infinite extension when jus-

tification of a state requires justification of the same state in an earlier time frame, i.e.,

there is a cycle in the state-transition graph.

� reducing the state assignment. Because it is generated heuristically, the state assign-

ment may be more constrained than is necessary; changing a non-
�

assignment to

an
�

may still propagate the fault. By reducing the number of constraints, the state

justification process is made easier.

� taking advantage of the the state of the latches produced as a result of simulating pre-

vious test vectors.

106

� using information computed by the fault simulator to detect the case in which a state

justification objective is covered by a state generated by previous test vectors.

6.2.3 Fault Simulation

HITEC uses the PROOFS fault simulator to fault simulate, for all undetected faults, any

test vectors generated or supplied externally. Since many test vector sequences detect more

than one fault, this process dramatically reduces the number of faults which must be consid-

ered by the test generator. HITEC orders the fault list to attempt to take maximum advantage

of these serendipitously covered faults.

6.2.4 Variable Time Frame

HITEC does not fix the length of the iterative array used to model the sequential circuit,

but instead starts with a single frame and creates ‘past’ and ‘future’ frames as necessary.

HITEC bounds the length of the ‘window’ into the iterative array but allows the window

to scroll forwards and backwards as required by the propagation and justification subtasks.

Scrolling has the advantage of bounding the space required to store the window without

requiring the number of justification and propagation frames be fixed a priori.

The organization of HITEC (including the PROOFS fault simulator) is shown in Fig-

ure 6.1. In their original form, HITEC and PROOFS run as separate programs, commu-

nicating via a TCP/IP socket. Though the two programs run in parallel, the synchronous

PROOFS

Knowledge

Evaluate

Window

Objectives

Frontier

Fault

VectorStates

Circuit

HITEC

Figure 6.1 HITEC/PROOFS organization

107

nature of the communication precludes parallelism. The original application is written in

C++ using an object-based design style. In particular, the object-oriented concept of encap-

sulation is only weakly represented and the use of dynamic-binding is omitted. Table 6.1

provides a brief description of the major classes in HITEC. Discussion of the operation of

the fault simulator, PROOFS, is deferred to Chapter 7.

6.3 Approaches to Parallel Test Generation

A number of approaches have been proposed for parallelizing test pattern generation.

We review the models and previous implementations.

6.3.1 Fault parallelism

Fault parallelism is the process of targeting a number of the many faults in a design in-

dependently. In this method, the fault set is divided—usually equally—among available

processors, each processor generating tests for its fault set independently. Implementations

based on this method have been proposed by Chandra and Patel [110], Patil and Baner-

jee [111], [112], Patil, Banerjee and Patel [113], and Agrawal et al. [114]. The main ad-

vantage of fault parallelism is low communication overhead; it is possible to achieve linear

speedups when the number of processors is small compared to the number of faults. The

main disadvantage is that the time required to generate a test for faults that are difficult to

detect in the serial algorithm, i.e., faults that require a large number of backtracks in the se-

rial algorithm, is not reduced in the parallel implementation. Additionally, since most test

generation systems now use fault simulation to capitalize on the serendipitous detection of

multiple faults by the patterns generated for a single fault, when fault parallelism is used,

Table 6.1 Classes in HITEC

Class Description

Circuit circuit connectivity, observability, and controllability
Window time window representing circuit state for all active time frames
Objectives List of justification objectives
Frontier list of D-frontier nodes
VectorStates database of test vectors and resulting state from PROOFS
Fault Fault status database

108

speedups can fall due to one processor expending useless effort to detect a fault which will

be serendipitously detected by the vectors generated for another.

6.3.2 Decision parallelism

Decision parallelism refers to the evaluation of the functions associated with several de-

cision alternatives in parallel. In this respect, techniques to parallelize ATPG borrow from

the parallelization of pure depth-first search [115], [116], [117], [118]. This technique was

proposed for test generation in [119], but the search space allocation strategy did not utilize

heuristics to increase the probability of searching in a solution area. A parallel branch and

bound algorithm was proposed by Patil and Banerjee [120], [121] that is based on searching

different portions of the search space concurrently. A similar parallel algorithm for combi-

national test generation, suitable for execution on a network of workstations, was proposed

by Arvindam et al. [122]. Recently, a parallel algorithm for ATPG on sequential circuits has

been proposed by Patil, Banerjee, and Patel [113]. The parallel algorithm, suitable for ex-

ecution on shared memory multiprocessors, uses a variation of decision parallel functional

decomposition. Ramkumar and Banerjee [123] used Charm [69] to create a parallel version

of [113] which used both fault parallelism and decision parallelism. The work presented

here adopts many of the techniques of their work.

6.3.3 Functional parallelism

As with any program, the test generation process can be partitioned into subtasks based

on functional blocks, e.g., the test generator, the fault simulator, the databases, etc. Each of

these tasks can be performed in parallel, limited only by data dependencies among them [124].

Motohara et al. [119] present a functional decomposition for test generation of combina-

tional circuits. Patil has proposed a functional decomposition of test generation for sequen-

tial circuits suitable for shared memory multiprocessors [125]. The difficulty of handling

data dependencies makes implementations of functional parallelism approaches particularly

difficult.

6.3.4 Heuristic parallelism

All test generation algorithms use heuristics to guide the search process. Experiments

reported in [126], [127] suggest that there is no clear advantage to using one heuristic over

another. Parallelism can therefore be exploited by assigning to each processor a different

109

heuristic to guide the search for the same fault. This method is referred to as heuristic par-

allelism. Chandra and Patel [110] report results on a parallel algorithm for test generation

of combinational circuits through the use of heuristic decomposition. The primary limita-

tion of this method is that the parallelism is limited by the number of heuristics available for

search, which is generally no more than five or six. Furthermore, when different heuristics

are used, there is no guarantee that search spaces are disjoint, which may lead to redun-

dant search. Finally, no improvement is possible if a fault remains undetectable for all the

heuristics.

6.3.5 Partition parallelism

Another approach to parallel test generation is based on circuit decomposition or parti-

tion parallelism. In the other parallel approaches, each processor has a copy of the complete

circuit; for large circuits, the memory of each processor may not be capable of storing the

entire circuit. In a partition parallel approach, each processor keeps a partition of the circuit

and performs backtracing operations on its own subcircuit to satisfy the various test gener-

ation objectives [128]. It has proven to be extremely difficult to achieve effective speedups

using this approach due to the high level of communication.

6.4 Parallel Test Generation using Actor Parallelism

As noted previously, any changes to an established and proven ATPG algorithm are more

likely to have an adverse effect on performance than they are to have a beneficial effect.

Since parallelization potentially changes the operation order of the algorithm, every change

must be considered carefully. In this section, we consider the changes required to parallelize

HITEC. We defer less significant, more mechanical changes and actual implementation de-

tails to Section 6.5. Our approach to parallelization is an extension of methods developed

in earlier work in parallel ATPG [112], [121], [123], [125]. Parallelism is generated in two

ways; through fault parallelism and decision parallelism (Figure 6.2).

6.4.1 Fault parallelism

Fault parallel execution is simply the process of partitioning the set of undetected faults

among the available processors and then running the test generation algorithm for each par-

tition in parallel. Implementation of fault parallelism is relatively easy since test generation

for different faults is largely independent. In terms of HITEC, fault parallelism is achieved

110
1 2 3 I N... ... Fault parallel

Execution

TDF=A TDF=B TDF=C TDF=D

PI5 = Y PI5 = Y

PI0 = X PI0 = X

Parallelism Limit

PI Assignment Decision

PI Assignment Decision

Targeted D-frontier
 Decision

Decision parallel
Execution

Serial Execution
Figure 6.2 Parallelism in ProperHITEC

simply by creating the Window objects in parallel rather than serially. There is minimal im-

pact on execution of HITEC when faults are tested in parallel. Since the only information

required to create a Window object is the target fault, creation of Window objects for all

faults in parallel has a negligible impact on performance. Although results of the parallel

implementation will vary due to differences in the order of execution, very little of the core

of the algorithm is affected.

The only heuristics impacted by fault parallel execution are the state knowledge heuris-

tics. In serial HITEC, a Window object can capitalize on the fact that the the state of the

circuit resulting from the execution of previous test vectors is known. Moreover, the state

of the circuit resulting from each previous vector is recorded in the VectorStates ob-

ject. In parallel HITEC, the state of the circuit due to the previous test vectors is not known,

because it is dependent on the order of evaluation of the individual test generation objects.

Similarly, although the states produced by previous test vectors are still available, in fault

parallel execution, the information available at any given time will not be identical to that of

the serial algorithm. While the issue of nondeterminism is not of particular concern, the in-

ability to model the previous latch state could be cause for concern if the impact were great.

The efficacy of this approach as reported in [52] is unclear, and this feature is not enabled

by default in the original HITEC implementation. We did not try to support this feature and

did not attempt to measure the impact.

111

6.4.2 Decision parallelism

In decision parallel execution, when a backtrackable decision is made, rather than per-

forming a depth-first search of the alternatives, new Window objects are created in parallel

to explore the alternatives. In PODEM, the only decisions are input assignments, thus the

object graph for each fault is a binary tree. In HITEC, backtrackable decisions are also made

on the targeted D-frontier; therefore, each node in the search tree is either an input assign-

ment with two out-edges representing the alternate assignments or a D assignment with
�

out-edges, where
�

is the total number of nodes in the D-frontier when one was targeted.

The use of decision parallelism was deemed necessary to achieve high efficiency on

many processors while quality of results is maintained. Quality is higher for decision paral-

lel execution because the evaluation of test objectives more closely matches the serial ver-

sion when decision and fault parallelism are combined than when fault parallelism alone is

used. In strictly fault parallel execution, all but one processor are working on a fault different

from the serial algorithm; if additional faults are covered by patterns generated by a previ-

ous fault, all work done in generating tests for those faults is wasted. Moreover, since test

generators generally spend most of their time generating tests for a relatively small num-

ber of hard faults, even with fault parallelism, execution time is bounded on the low end

by the time required to test the most difficult fault. Decision parallelism explores differ-

ent areas of the search space in parallel; therefore for cases in which a large portion of the

search space must be explored, significant speedup can be achieved. Note that by casting the

ATPG search in such a general framework, it is easy to enable purely fault parallel, purely

assignment parallel (i.e., PODEM/ProperTEST), or assignment and D-frontier parallel

execution (HITEC).

Only one significant change to HITEC heuristics was required to implement decision

parallelism. The change stems from the inability to pass information up the search tree in

parallel search. When a backtrack occurs in depth-first search, information gained in de-

tecting the backtrack can be passed up the search tree to influence the backtracking process

itself. HITEC utilizes this information when a state-justification failure occurs; when this

type of condition occurs, a backtrack-must-change-state flag is set, which indi-

cates that any decision alternatives that do not change the state-justification target should be

backtracked immediately. When a decision alternative results in a different state for justifi-

cation, normal operation resumes.

When decision parallelism is used, a breadth-first-like search is employed. Since deci-

sion alternatives no longer execute strictly in sequence, there is no way to pass the back-

112

track-must-change-stateflag among them. Fortunately, this information is closely

related to the complete set of unjustifiable states, already maintained by the fault database.

For those cases in which the backtrack-must-change-state flag is set, the back-

tracked state must be in a list of failed states. Checking the failed states list is actually more

accurate, because a backtrack that does change the state may simply change it to another

failed state, a condition which the original HITEC algorithm does not detect. Since the

amount of processing required to check the failed states list is greater than that required to

simply test a flag, the choice of which technique to use is dependent on the relative amount

of time required to check the list versus that required to perform the useless work of explor-

ing nonsolution alternatives. Testing of HITEC using both heuristics showed the cost of

useless searching to be far greater than the cost of checking the failed states list; therefore,

HITEC and ProperHITEC have been modified to use the effective heuristic.

Implementation of decision parallelism involves overloading the decision routinesstore

pi() and store Dfrontier() to create new Window objects. In essence, the pro-

cess consists of cloning the current Window object, with the exception of the assignment

to be made. Since the Window object contains the state of all nodes in the circuit for all

active time frames, the cost of this operation can be significant. Also, since the number of

new Window objects produced rises exponentially in the number of decisions performed in

parallel, beyond a relatively low limit the benefit of decision parallel execution disappears.

When decision parallelism is used, a limit on the depth of decisions performed in parallel

is set; after a fixed number of decisions is executed in parallel, operation resumes using the

HITEC depth-first algorithm.

6.5 ProperHITEC

ProperHITEC, based on the original HITEC code and the ProperCAD II library, im-

plements the parallelism features described in Section 6.4. To implement parallel search,

multiple search processes—Window objects—are created, either from the fault to be tested

(fault parallel) or from the fault, the current state of the heuristics, and the set of previously

assigned inputs (decision parallel). Furthermore, we have to distribute the data contained in

the other objects, e.g., the fault database, the vector/states database, and the fault simulator.

Figure 6.3 shows the ProperHITEC objects that have parallel semantics, along with the

HITEC and AIF objects from which they are derived.

113

CircuitAggregate

TestGeneratorAggregate UserInterface VectorsFaultDataBase

HITEC class ProperCAD II class ProperHITEC class

Window VectorStatesFault Actor
Circuit/
Dominators

Figure 6.3 ProperHITEC organization

6.5.1 TestGenerator

The TestGenerator object is an actor that represents a ‘test generator machine.’

TestGenerator instances can be created for a specified fault to implement fault par-

allelism, or they can be cloned from an existing instance and an alternate assignment to

implement decision parallelism. Decision parallelism is bounded by a user-specified limit,

beyond which decisions are made in a depth-first manner using the serial code.

ProperHITEC uses lexicographically ordered bit-string priorities to guide the execu-

tion of ProperHITEC as closely as possible to the order used in the sequential algorithm.

When bit-string priorities are used, the next test generator object to be evaluated, chosen

from a group of tasks, is always the one which would have been evaluated first by the se-

quential algorithm. On a single processor, test objectives are evaluated in the same order as

they are in HITEC; the only case for which HITEC and ProperHITEC on one processor

generate different results occurs when per-fault time limits are used, in which case small dif-

ferences in run times can cause a fault to be aborted in one application, where it is detected

in the other.

The use of bit-string priorities in ProperHITEC is an extension of the method pro-

posed in [123]. The priorities are extended to support the nonbinary nature of the search

tree in HITEC. We note that in the AIF, the use of bit-string priorities for the test generator

objects has no effect on the priority representations used by the other objects in Proper-

HITEC or in the library in general.

6.5.2 CircuitAggregate

The circuit is implemented as an aggregate with a PerThread distribution. Data shar-

ing via a PerProcessGroup distribution was implemented but was later removed be-

114

cause the HITEC algorithm uses fault injection through circuit modification; a method of

parallel fault injection algorithm that would allow the circuit data to be shared resulted in ex-

cessive overhead in the core HITEC algorithm. Switching the distribution of the aggregate

is a one-line change.

6.5.3 FaultDataBase

The fault database is implemented as an aggregate with a PerThread distribution.

Each representative stores the most recent state of the test generation process for each fault

and provides the same interface to the test generator objects as does the serial Fault ob-

ject. When an update is received from a TestGenerator object or from the vector/states

database, the FaultDataBase representative records the information locally, and if this

results in a change of the local state, it broadcasts that information to all other representa-

tives. The broadcast operation is implemented via operations on first class names.

6.5.4 Vectors

The Vectors object is essentially the same as the serial object but uses ActorMe-

thods to record new vectors and to send results to the FaultDataBase. Fault simula-

tion is performed using the FaultSimulator object used in HITEC, invoked by actor

methods provided by the Vectors actor. Test generators have been observed to spend little

time in fault simulation; therefore, parallelization of the fault simulator used for test gener-

ation was not investigated. Parallel fault simulation as an independent task is covered in

Chapter 7.

6.5.5 UserInterface

The UserInterface object is used to interact with the user during the running of the

test application. It creates the system objects and then creates test generator objects for each

undetected fault in the circuit. If the progressive time limit feature of HITEC is used, the

process of creating test generator objects is iterated with progressively larger time limits.

115

6.6 Performance

6.6.1 Performance results

Tables 6.2, 6.3, and 6.4 show the results of ProperHITEC for a number of circuits

drawn from the ISCAS-89 benchmark set [104]. All times, T, are reported in seconds and

represent the elapsed wall clock time.
�

Fault efficiency, E, computed as

efficiency �
� #faults � #aborted �

#faults

is presented. V is the number of test vectors generated.

For each circuit, the results of the sequential HITEC algorithm and the ProperHITEC

algorithms on various machine configurations are reported. The HITEC numbers presented

are for the version of HITEC that shares code with ProperHITEC. Although the current

version of HITEC takes greater advantage of dynamic memory allocation, the amount of

time spent doing memory management has been carefully analyzed and has been determined

to be less than a fraction of a percent.

ProperHITEC achieves consistent speedup with only a marginal effect on quality across

a range of moderately difficult test problems. ProperHITEC achieves consistent speedup

with only marginal effect on quality across a range of moderately difficult test problems.

The major effect on quality is the addition of a small amount of noise in the results; while

ProperHITEC does not always achieve results identical to HITEC, the number of cases

for which it produces higher quality results are comparable to the number of cases for which

it produces lower quality results.
�

The only time excluded from reported times are for initialization and final writing of results, which are
required because some of the parallel machines implement I/O poorly.

Table 6.2 ProperHITEC results on Sun 4/670MP

Circuit/ HITEC ProperHITEC
Seconds Processors

Per 1 2 3 4
Fault T E V T E V T E V T E V T E V

s344/20 369.4 95.9 121 374.3 95.9 121 251.9 96.2 110 160.0 96.5 130 156.2 96.2 112
s820/20 435.9 99.3 956 396.8 99.3 956 225.4 99.3 1010 196.3 99.1 1059 140.3 99.1 1013
s953/20 125.8 100 20 134.2 100 20 71.37 100 12 64.17 100 16 47.24 100 12
s1238/2 13.13 100 386 21.64 100 386 15.15 100 390 13.31 100 405 16.18 100 385

s1494/20 722.0 99.1 1058 663.4 98.9 1058 434.1 98.9 1123 350.5 98.9 1153 240.1 99.1 1093

116

Table 6.3 ProperHITEC results on Intel iPSC/860

Circuit/ HITEC ProperHITEC
Seconds Processors

Per 1 2 4 8
Fault T E V T E V T E V T E V T E V

s344/20 481.4 94.2 89 485.8 94.2 89 215.8 96.8 105 194.5 96.8 112 142.1 96.5 102
s820/20 438.3 99.3 959 440.8 99.3 959 270.4 99.2 958 158.0 99.3 951 108.0 98.9 1034
s953/20 140.2 100 14 147.7 100 14 89.13 100 14 49.00 100 24 28.66 100 14
s1238/1 14.15 100 374 23.29 100 374 14.69 100 383 12.16 100 369 11.12 100 402

s1494/20 819.8 99.0 1079 821.3 98.7 1079 503.3 99.1 1168 310.1 98.6 1113 192.2 98.8 1151

Table 6.4 ProperHITEC results on Encore Multimax

Circuit/ HITEC ProperHITEC
Seconds Processors

Per 1 2 4 8
Fault T E V T E V T E V T E V T E V

s344/20 484.2 93.9 105 493.2 93.9 105 274.3 95.6 95 167.0 95.6 85 131.2 94.7 108
s820/20 1200 97.8 891 1206 98.1 891 761.8 97.6 1008 418.9 97.2 959 255.6 96.9 955

s953/100 572.4 100 20 597.1 100 20 343.3 100 18 252.1 100 14 166.7 100 10
s1238/10 65.41 100 386 97.49 100 386 60.53 100 382 53.83 100 382 55.35 100 406
s1494/10 2615 87.0 492 2920 84.2 402 1654 85.5 460 997.0 83.9 497 540.2 85.5 510

Cases for which the parallel algorithm does not achieve acceptable results are the ‘easy’

benchmarks, those for which 100% efficiency is achieved by the serial algorithm within a

few seconds. Since these are easy problems which finish quickly, optimization for these

cases is not of great interest.

6.6.2 Workstation cluster results

Table 6.5 shows the results of ProperHITEC on a workstation cluster of Sun SPARC-

station 10s and Sun 4/600MPs. The columns labeled 2 and 4 processors were run on the

indicated number of individual workstations. The column labeled 2/2 was run on an IP-

connected pair of Sun 4/600 multiprocessors. Each machine had four processors, but only

two were used in each case. The results for the workstation cluster port show much greater

variation than do the previous results. This variation is a function of the performance of the

APA UDP implementation (Section 4.5). If the cases in which the network protocol failed

are excluded, the results show speedups comparable to those on multiprocessors and mul-

117

Table 6.5 ProperHITEC results on clusters

Circuit HITEC ProperHITEC
Processors

1 2 4 2/2
T E T E T E T E T E

s526 6083 12.1 1.01 12.1 2.0 12.3 1.0 12.1 3.1 12.3
s820 468 99.5 0.95 99.5 2.0 99.5 0.4 99.3 1.6 99.5

s5378 2982 71.1 1.03 71.1 0.5 70.3 2.4 69.4 3.0 72.5

ticomputers. It appears that the use of clusters of multiprocessors helps to mitigate some of

the UDP artifacts.

6.6.3 Efficiency results

In addition to providing faster turnaround, parallel processing can be used to achieve

higher fault efficiency in a fixed amount of time. Table 6.6 shows the results of running test

generation on s1494 where the per-fault time limit was scaled with number of processors.

Consistent improvement is observed for all platforms. Of note is the fact that even though

the time limit was raised in tandem with the number of processors, run times still decrease

on parallel runs. This result is due to the fact that once a fault is detected, raising the per-

fault time limit does not increase run time.

Table 6.6 Increased efficiency in ProperHITEC

Machine Seconds # T E
Per of

Fault Processors
Sun MP 1 1 707.0 82.2

2 2 230.7 97.1
3 3 222.0 97.6
4 4 185.4 98.1

iPSC/860 2 1 777.4 79.5
3 2 335.0 94.4
8 4 212.7 97.8

20 8 192.2 98.8
Multimax 2 1 2069 42.0

4 2 1465 67.1
8 4 1047 77.4

20 8 540.2 85.5

118

6.6.4 Comparison to ProperTEST

Table 6.7 compares the results of ProperHITEC with those of ProperTEST [123],

an earlier work in parallel ATPG, based on similar parallelism concepts. The table shows

the results of the two applications run on an iPSC/860 with eight processors. In general,

where ProperTEST achieves high fault efficiencies, the results are faster but compara-

ble to ProperHITEC. In cases where ProperTEST does not achieve high efficiency,

ProperHITEC does and in a fraction of the time.

6.7 Evaluation

One of the most interesting aspects of the development of ProperHITEC was the use

of derivation to extend the serial application to a parallel application. In previous work us-

ing Charm [123], similar algorithmic techniques were used, but they required incompatible

changes to the original serial code. In the case of ProperHITEC, the only fundamental

change was the modification of several functions in the serial code to use dynamic binding

in order that those functions could be overridden in the derived actor and aggregate classes.

Because changing static dispatch to dynamic dispatch involves the addition of a level of in-

direction, the performance impact was considered carefully. The affected functions are not

called within the most computationally intensive part of the test generation process and no

performance degradation was observed.

Aggregates were key to expressing data distribution in a simple way and to keeping sta-

tus information representing the progress of the test generation process up to date. Hetero-

geneous priorities were used both to order the evaluation of test generator objects and to en-

sure that continuations called on the aggregates took priority; delays in distributing updates

Table 6.7 Comparison of ProperHITEC and ProperTEST on iPSC/860

Circuit/ ProperHITEC ProperTEST
Seconds

Per
Fault T E T E

s344/20 142.1 96.5 97.5 95.0
s349/20 128.1 94.6 109.9 95.4
s820/20 108.0 98.9 1081.5 60.4
s832/20 118.0 98.7 1053.8 61.1

s1494/10 192.2 98.8 756.6 73.4

119

to the fault database, for example, result in wasted work, as TestGenerator objects try

to generate tests for faults that have already been tested.

It is difficult to quantify the effort required to create ProperHITEC from HITEC. The

design and implementation of ProperHITECwere performed in parallel with the develop-

ments of the AIF and APA, which makes determination of the duration of the development

period impossible. Moreover, a significant amount of work was required to regularize the

original serial HITEC/PROOFS code; these applications represent the first use of C++ by

the original designer. When the time necessary to clean up the original code is excluded, it

is estimated that the preliminary parallelization effort took approximately two man-months,

and improvements and the most significant debugging required an additional man-month.

Quantification of changes to the original application is equally difficult, in this case not

because statistics are difficult to generate, but because simple measurements—such as the

raw number of lines of code—contain limited information without additional contextual in-

formation such as coding style. We report several metrics of the HITEC and ProperHI-

TEC implementations in Table 6.8; interpretation should be done with care. In addition to

reporting the raw number of lines of code, we report the number of lines containing a semi-

colon; this measure shows less variation across coding styles. Also reported is the number

of classes in the different versions; virtually all the significant classes are shared between the

parallel and serial versions. The exceptions are the five actor and aggregate classes shown

in Figure 6.3 and the TestPriority class used to specify an order on parallel evaluation

of test generation tasks.

While the values for lines of code indicate a significant amount of new code, the bulk of

the additional code is declarative, which provides new control flow, via ActorMethods,

and aggregation of data, i.e., the structures used to represent the single argument to an actor

Table 6.8 Comparison of software metrics for HITEC and ProperHITEC

Metric HITEC ProperHITEC Shared
Lines of code 336 6287 10685
Lines of code with ‘;’ 110 1165 3056
Classes 0 6 17
excluding ActorMethod and argument classes
ActorMethod classes 0 27 0
ActorMethod argument classes 0 13 0

120

method. The number of classes used to represent these two sets of operation are shown in

the last two lines of Table 6.8.

A breakdown of the number of actor methods by class is shown in Table 6.9. The major-

ity ofActorMethods are found in theFaultDataBase andUserInterfaceclasses.

In the FaultDataBase class, the methods are used to communicate allocation and status

information on the current state and usage of resources for each fault. In theUserInterface,

the majority of actor methods are used to sequence the creation and destruction of aggregate

instances.

Table 6.10 presents the numbers of member functions in the concurrent types and the

serial types from which they are derived. These data represent a measure of the paralleliza-

tion effort and show that most functionality in ProperHITEC is inherited from HITEC.

Most of the functions in ProperHITEC are small; they perform most of their computation

through calls to members of the serial base class.

In addition to the creation of the concurrent object types, to implement parallelism a

number of previously statically bound members of serial HITEC classes had to be modified

to use dynamic binding; the original serial code contained no use of dynamic binding. The

number of virtual members is reported in Table 6.11 along with the total number of mem-

Table 6.9 ActorMethods for each class in ProperHITEC

Number of
ProperHITEC class ActorMethods
TestGenerator 3

CircuitAggregate 4
FaultDataBase 8

Vectors 4
UserInterface 8

Table 6.10 Member functions in HITEC and ProperHITEC

Number of Number of
HITEC class member functions ProperHITEC class member functions
Window 78 TestGenerator 8
Circuit 47 CircuitAggregate 6
Fault 35 FaultDataBase 21

VectorsStates 12 Vectors 5

121

bers. Most classes required few if any new virtual members, the exception being the fault

database which contains a number of small status update functions that are overloaded in

the parallel application to propagate updated status information to all processors.

Table 6.11 New virtual members in HITEC

Number of
Number of new virtual

HITEC class member functions member functions
Window 78 4
Circuit 47 0
Fault 35 13

VectorsStates 12 0

122

Chapter 7

PARALLEL FAULT SIMULATION

Fault simulation is used to determine the fraction of faults in a circuit that are covered by

a given set of tests. As was shown in Chapter 6, fault simulation is used during automatic test

pattern generation to identify those faults detected serendipitously to minimize the number

of faults to be targeted by the test generator. Fault simulation is also used to evaluate the

efficacy of sets of test vectors. These vectors may be functional vectors generated during

the design of a circuit or may be generated randomly prior to test generation to minimize

the number of faults to be processed by a deterministic test generator. The results of fault

simulation are lists of faults detected and undetected by the set of vectors. From these lists,

the fault coverage, the ratio of the number of detected faults to the number of total faults,

can be calculated. On large complex circuits with large test sets, fault simulation can take

from hours to days.

In this chapter, we present ProperPROOFS, a parallel implementation of the PROOFS

fault simulation package. ProperPROOFS uses the aggregate model as implemented in

the AIF to decompose the fault simulation problem. In addition to the use of derivation

to incrementally parallelize an existing state-of-the-art serial fault simulation application,

ProperPROOFS incorporates a new asynchronous and distributed method of fault redis-

tribution to improve load balance.

After briefly reviewing the area of fault simulation, we summarize the features of the

PROOFS package for sequential ATPG. In Section 7.4, we consider modifications to the

PROOFS package necessary to support parallelism. In Section 7.5, we discuss the imple-

mentation details ofProperPROOFS. Section 7.6 summarizes the performance ofProper-

PROOFS on a number of circuits in the ISCAS-89 benchmark set [104].

123

7.1 Fault Simulation

The task of fault simulation is the determination of the set of detected faults in a circuit

for a given set of test vectors. For each fault in a specified list of faults, the fault simulator de-

termines whether the results of the fault-free circuit and the circuit containing the specified

fault would differ in any circuit output. A naı̈ve fault simulator could be built from a logic

simulator by running a logic simulation of the test set against the good circuit, recording

the results, modifying the circuit in order that it exhibits the behavior of the faulty circuit,

running the test set again, and comparing the results. If the two results differ, the fault is

detected; otherwise, it is not detected.

While such a methodology is sufficient and thus provides an upper bound on the compu-

tation required by fault simulation, it is exceedingly expensive. With current fault models,

the number of faults in a circuit grows linearly with the size of the circuit, and with circuits

of hundreds of thousands of gates, significant effort has been expended in optimizing the

basic logic simulation concept for fault simulation.

Fault simulation can be viewed as filling the entries of the table in Figure 7.1 [129]. Each

row in the table represents a circuit: the first row represents the good error-free circuit, the

succeeding rows represent a circuit with one fault, as indicated by the subscript. There is

one column in the table for each vector in the test set. The entries of the table represent

the state of the indicated circuit after application of the indicated and all preceding vectors.

Fault simulation techniques may be classified by the manner in which they fill the table. The

most popular approaches in serial fault simulation are concurrent, deductive, differential,

and bit-parallel.

Good

Faulty1

Faulty2

Faultym

G1 G2 Gn

Vector1 Vector2 Vectorn

F1,1 F1,2 F1,n

F2,1

Fm,1

F2,2

Fm,2

F2,n

Fm,n

•••

•••

•••

•••

••• •••

•••

•••••••••

Figure 7.1 Fault simulation table model

124

In concurrent fault simulation [130], each faulty entry is filled using the good circuit

entry for the same vector, computed separately, and the entry to the immediate left, the state

of the same faulty circuit during the previous vector (Figure 7.2). Concurrent techniques

generally result in fewer numbers of events at the expense of memory necessary to store

lists of active faulty machines.

In deductive fault simulation [131], faulty entries are filled in the same order as concur-

rent fault simulation. Deductive fault simulation differs from concurrent in that set-intersection

operations are performed on the set of active faulty machines for each node. While the stor-

age requirements are less than those of concurrent fault simulation, the computational costs

are higher.

In differential fault simulation [132], each faulty entry is filled using only the entry im-

mediately above, the state of the previous faulty circuit during the same vector (Figure 7.3).

While memory efficient, the dependency between faulty machines prohibits fault dropping,

�����

�����

�����

�����

�����

Gj

Vectorj

Fi,j

�����

�����

�����

�����

�����

�����

�����

Good

Faultyi

�����

�����

Fi,j-1

�����

�����

�����

�����

Figure 7.2 Concurrent and deductive fault simulation

�����

�����

�����

Fi,j

�����

�����

�����

�����Fi-1,j

Faultyi

�����

Faultyi-1

�����

�����

Gj

Vectorj

�����

�����

Good

����� ����� ����������

Figure 7.3 Differential fault simulation

125

the process of removing faults from future consideration once the fault has been detected

for the first time.

In bit-parallel fault simulation [133], all bits in the processor word are used and entries

are filled in groups of the word size (Figure 7.4). On a k-bit processor, the good circuit and

k � $ faulty machines are simulated in each operation. This use of all bits in the proces-

sor word can lead to as much as a k-fold improvement in performance, though in practice

smaller improvements are observed due to an increase in the number of events processed

by the simulator.

In the literature, what we are calling bit-parallel is generally called parallel fault sim-

ulation. Due to the ambiguity of the term ‘parallel’ when used in the context of parallel

processing, we will prefer the phrase bit-parallel to describe this class of techniques.

7.2 PROOFS: A Serial Fault Simulator

PROOFS, developed by Niermann et al. [134], combines techniques from bit-parallel,

concurrent, and differential fault simulation to achieve performance exceeding the individ-

ual methods without incurring large memory requirements. In this section, we review briefly

the techniques incorporated within PROOFS.

7.2.1 Dynamic fault grouping

PROOFS uses a dynamic method of grouping faults into words to perform bit-parallel

fault simulation. For each test vector, PROOFS iterates over the list of undetected faults,

����� Fi+k-2,j
�����Faultyi+k-2

����� ����� ����������

����� �����Fi,jFaultyi

�����

�����

Gj

Vectorj

�����

�����

Good

����� ����� ����������

����� ����� ����������

k bits

Figure 7.4 Bit-parallel fault simulation

126

selecting faults until the word length is reached or until there are no additional faults. Good

circuit simulation is performed separately; therefore all bits of the words are used. During

selection of faults, each candidate is checked to see whether it is active in the current time

frame; faults that are not active are excluded, which eliminates useless simulations. The

fault list is ordered to assure that there is a high probability that simulation of faults within

the same group will result in activity in the same part of the circuit, which will decrease the

number of events processed.

7.2.2 Fault injection

PROOFS uses the same fault injection scheme used in HITEC. By injecting faults via

circuit modification, the event evaluation loop, the core of the algorithm, becomes more

regular and therefore faster.

7.2.3 Fault dropping

The combination of techniques incorporated into PROOFS allows for fault dropping as

soon as a fault is detected.

7.2.4 Faulty state storage

PROOFS simulates all faults for an individual vector before processing the next vec-

tor. Before evaluating any faults, PROOFS simulates the good circuit using an event-driven

logic simulator, storing the values at every node for reference during faulty simulation. Faults

are simulated in groups, again using event-driven simulation. In this case, the event-driven

simulation is relative to the values in the good circuit. At the end of each group, only the

state values for faulty circuits that are not detected and that are not equal to the good circuit

values are saved; the complete state of the circuit for each faulty circuit is discarded.

The organization of PROOFS (including the HITEC test generator) is shown in Fig-

ure 7.5.

7.3 Approaches to Parallel Fault Simulation

A number of approaches have been proposed for the parallelization of fault simulation.

We review the models and previous implementations, restricting the discussion to techniques

127

HITEC

Frontier

Objectives

Window

Fault

VectorStates

Circuit
Knowledge

Evaluate
PROOFSFigure 7.5 PROOFS organization

applicable to sequential circuits. Discussion of techniques applicable only to combinational

circuits can be found in [135].

7.3.1 Fault partitioning

Fault partitioning in fault simulation is similar in concept to fault parallelism in test gen-

eration. The fault list is divided—again, usually equally—among available processors, each

processor simulating all faults in its partition independently. However, more than in test

generation, load balance is a critical issue in fault simulation. Due to the wide variation in

event activity generated by different faults, static partitioning is generally not successful.

Among the parallel fault simulation implementations based on fault partitioning, a number

of differences are found in partitioning and load balancing. In addition to losses of efficiency

due to uneven load balance or of computation necessary to implement load balancing, parti-

tioning of the fault list gives rise to overheads due to duplicate computation of good circuit

values. The only techniques that do not incur this overhead are bit-parallel simulations for

which the good circuit values are always calculated with every fault group.

Several implementations based on fault partitioning have been reported. Virtually all

are based on a master-slave model in which a single processor is dedicated to maintaining

the list of undetected faults. Slaves request fault groups from the master, perform simula-

tion, and return results. Duba et al. [136] report this type of scheme based on the CHIEFS

concurrent hierarchical serial fault simulator [137]. The implementation is targeted at work-

station clusters and uses remote procedure calls (RPCs) [20] for communication. Speedups

128

from five to six were reported on eight processors. Markas et al. [138] report a distributed

fault simulation algorithm on a heterogeneous workstation cluster; speedups ranged from

two to six on eight workstations for a small number of examples.

7.3.2 Circuit partitioning

The main alternative to fault partitioning is circuit partitioning, in which the good circuit

being simulated is partitioned among available processors. Circuit-partitioned fault simu-

lation is effectively a variant of parallel logic simulation, itself a difficult problem [139].

In fault simulation, the problems of logic simulation are compounded by the link between

circuit partitioning and fault list partitioning; the number of faults a processor simulates is

fixed by the partitioning. Short of redistributing the circuit, there is no way to redistribute

faults if all faults in a partition are dropped.

Fault simulation based on circuit partitioning has been reported by Mueller-Thuns et

al. [140] and Nelson [141] for a vector-synchronous implementations on message passing

machines. Ghosh [142] presents an asynchronous implementation based on asynchronous

logic simulation techniques that, while novel, falls short of achieving high processor effi-

ciency. In [143], Patil et al. present a circuit-partitioned approach applicable to shared mem-

ory machines machines that incorporate techniques from parallel logic simulation [139], [144].

7.3.3 Pattern partitioning

For combinational circuits, fault simulation can be trivially parallelized by partitioning

the test vector set. The only significant issue is load balance, similar to the fault partitioning

case. For sequential circuits, the problem is much more difficult, because simulation of any

vector in a sequential circuit requires the state resulting from all previous vectors. Kung and

Lin [145] present a novel technique for applying pattern partitioning to sequential circuits.

In their algorithm, the good circuit is simulated for all vectors, but faulty circuits are sim-

ulated for only a subset of the vectors. Because the faulty state is not available for unsim-

ulated vectors, faulty simulations may be inaccurate. In those cases, the error is detected

and multiple simulation passes are performed. The advantage of this method is that it is

based on a fault simulation technique that demonstrates good performance but is otherwise

inapplicable to sequential circuits. Banerjee [135] has proposed a parallel fault simulation

algorithm for sequential circuits based on pattern parallelism; no implementation has yet

been reported.

129

7.4 Parallel Fault Simulation Using Actor Parallelism

In addition to casting fault simulation into an actor framework, a primary goal of this

work was the elimination of single points of contention, e.g., the actor or processor that

does load balancing in master-slave methodologies.

7.4.1 Fault partitioning

The approach adopted in this work is the fault partitioning method covered in Subsec-

tion 7.3.1. A single aggregate, FaultSimulatorAggregate, is created to represent

the fault simulator; faults are partitioned among representatives. In a fault simulation ap-

plication, the aggregate is given a PerThread distribution. Each representative is respon-

sible for fault simulating its set of faults for all vectors in the test set.

Fault partitioning in the aggregate model is similar to the techniques reviewed in Sub-

section 7.3.1 with a significant difference: a master-slave model for load balancing is not

used. Instead, two methods were investigated.

7.4.1.1 Static partitioning

Static partitioning was implemented, the results for which are shown in Table 7.1 for

circuits from the ISCAS-89 benchmark set. For each circuit, the results of the serial appli-

cation, PROOFS, is shown for fault simulation of 1000 random vectors. The results for the

parallel application, ProperPROOFS, without dynamic redistribution are shown for a sin-

gle processor and several multiprocessor configurations. The results in the table show that

static redistribution led to less than optimal speedup, and as a result dynamic redistribution

was considered.

7.4.1.2 Dynamic partitioning

The motivation for the aggregate model was the use of a multiaccess interface; to add

a bottleneck in the form of a master representative is a limitation to scalability. Instead, an

asynchronous, distributed method of fault redistribution was developed to achieve effective

load balance without limiting scalability. In the remainder of this subsection, we look at the

asynchronous redistribution of faults and address the issue of termination detection when

the fault redistribution process is distributed.

130

Table 7.1 Run time and speedup for static fault distribution on the iPSC/860

Circuit PROOFS ProperPROOFS
(sec) Processors

(speedup)
1 2 4 8

s208 9.1 0.99 1.51 2.60 4.48
s208o 3.6 0.95 1.40 1.79 1.98
s298 4.5 0.94 1.21 1.60 1.62
s344 4.4 0.89 1.01 1.05 1.10
s349 4.5 0.89 1.01 1.04 1.09
s382 10.9 0.94 1.29 1.92 2.38
s386 3.0 0.93 1.38 1.68 2.19
s400 12.2 0.95 1.36 1.91 2.45
s420 23.5 0.97 1.49 2.56 4.43
s444 14.5 0.96 1.34 2.02 2.84
s510 37.8 0.96 1.62 2.55 4.41
s526 17.4 0.96 1.45 1.87 2.52
s526n 16.8 0.96 1.41 1.88 2.54
s641 5.9 0.96 1.12 1.50 1.57
s713 6.7 0.97 1.19 1.58 1.74
s820 11.5 0.96 1.20 1.54 1.83
s832 11.7 0.95 1.22 1.55 1.88
s838 63.2 1.01 1.50 2.55 4.37
s953 101.9 1.03 1.41 2.66 3.96
s1196 9.9 0.99 1.41 1.90 2.28
s1238 11.4 0.99 1.50 2.00 2.51
s1423 46.1 0.98 1.64 2.70 4.14
s1488 21.5 0.98 1.26 1.50 1.65
s1494 21.8 0.96 1.27 1.52 1.67
s5378 150.3 0.99 1.34 2.19 3.74
s9234 458.8 1.00 1.60 2.48 2.90
s13207 1598 0.99 1.38 1.93 3.24
s15850 966.8 0.98 1.75 2.96 4.88
s35932 1124 1.01 1.39 1.90 2.43
s38417 5112 0.97 1.84 3.60 6.49

1000 random vectors

131

7.4.2 Asynchronous fault redistribution

As a result of targeting a scalable approach, master-slave techniques, for which that

master processor or communications network will at some point saturate, were excluded.

Instead, an initial constraint was made that all representatives should be equal, that none

should perform computation significantly differently or be in any way more authoritative

than another. Also, global communication was to be avoided, since all representatives do-

ing global communication could result in large communication requirements.

7.4.2.1 Requesting faults

Each representative fault simulates all vectors for all faults in its current partition. At the

completion of the simulation, the representative sends a request to another representative for

more faults to be simulated. In the master-slave model, the other representative would be an

authoritative representative that would generally be dedicated to serving requests for fault

partitions. We adopt the default random representative selection model of aggregates [5]

with a constraint: the selected representative cannot be the representative making the re-

quest. The call to the other representative has as an argument the representative index of

the requester. If faults are available, they are returned via a request to simulate a new set

of faults starting from a specified vector (Figure 7.6). The set of faults is created by divid-

ing the set of remaining faults to be simulated by the other representative. After sending a

split request, an actor remains idle until new faults are supplied by another representative.

Techniques similar to the random representative selection method described here have been

used in loop scheduling for FORTRAN programs on shared memory [146] and distributed

memory machines [147].

Rep X
Faults: 0

Rep Y
Faults: N

Split with X

N/2 Faults
from Vector M

Figure 7.6 Split request in fault redistribution

132

7.4.2.2 Splitting fault lists

Upon receiving a request to split a fault list, an actor performs a number of tests. First,

it determines whether it has any faults remaining to be simulated. If it does not, the actor

simply forwards the request to another representative at random, this time excluding both

the original requester and itself (Figure 7.7). If the actor has remaining vectors to send, it

divides its fault list and returns half to the requesting representative.

7.4.2.3 Rescheduling

Because the actor model does not support preemption, in order to support fault redistri-

bution it is necessary to have representatives reschedule themselves, i.e., send continuations

to themselves to continue the current computation. This rescheduling occurs instead of se-

rially processing all vectors. Without rescheduling, an actor that has faults that may be split

will never receive a request to split its fault list until it already has no faults to share. Be-

cause rescheduling continuations are always sent to the actor itself, they never incur delays

due to network latency.

7.4.2.4 Communication characteristics

In the process of fault simulation, an actor will generally either be performing fault sim-

ulation in response to a rescheduling request or it will be waiting for more vectors to simu-

late from another representative. If the actor has faults to simulate, it will periodically send

itself a simulate request and return control to the run time system. Thus, for active represen-

tatives, there exists one task, always in the local task queue, representing the continuation

of the current simulation. For idle representatives, there will be a task somewhere in the

machine representing a request for more faults to process. At the beginning of the simula-

tion when the first representative completes, this split message is generally satisfied by the

first actor to receive the request. As simulation progresses toward completion, the number

of idle processors grows and fewer split messages are satisfied by the first actor to receive

the request. While the number of messages in flight in the network grows, the number is

bounded by the number of idle processors because an idle processor sends only one request

message.

133

Rep X
Faults: 0

Rep Y
Faults: 0

Split with X

N/2 Faults
from Vector M

Rep Z
Faults: N

Split with X

Figure 7.7 Forwarding of split requests

7.4.2.5 Termination detection

One aspect of asynchronous redistribution that causes more difficultly than the master-

slave case is the detection of completion of all simulation. In the master-slave case, the

master knows immediately when all faults have been simulated. In the distributed case, no

representative knows the total state of the fault simulation.

There are two straightforward methods for determining when fault simulation is com-

plete. The first is to centralize the status of the fault simulation progress in an arbitrary repre-

sentative, for example, representative zero, and to have all other representatives send a sta-

tus message to that representative every time they complete the simulation of a set of faults

for all vectors. The status representative can trivially determine when the operation is done

by summing these requests and comparing against the total number of faults in the circuit.

While this approach implies a small amount of asymmetry among representatives, it does

not suffer from the primary drawback of the master-slave approach which is synchroniza-

tion, the inability of the slave to perform any computation until a response is received from

the master. In the case of status-only data, no reply is expected in response to sending a sta-

tus message to the coordinating representative; therefore normal processing can continue.

Moreover, since if the coordinating representative has any vectors to simulate it is trivially

the case that the simulation has not completed, status messages can be given low precedence,

thereby not impeding the coordination representative’s fault simulation progress.

The second alternative for termination is the use of quiescence detection on outstanding

rescheduling requests. When the number of outstanding rescheduling events reaches zero

and no representatives are performing fault simulation, the simulation has completed. This

technique was implemented and is considered more fully in Subsection 7.7.3.

134

7.5 ProperPROOFS

The techniques in Section 7.4 are implemented in ProperPROOFS, the architecture

of which is shown in Figure 7.8. In this section we address implementation issues of the

FaultSimulatorAggregate class.

7.5.1 Rescheduling and prioritized execution

Rescheduling is implemented by having each representative call a method Simulate

with no arguments on itself periodically. The most obvious points at which to do reschedul-

ing are after every fault group is executed and after every vector is simulated for all fault

groups. To determine which point to choose, serial PROOFS was instrumented to measure

the time required for each operation. Results for a few sample circuits are shown in Ta-

ble 7.2. The table shows that the fastest fault groups still take hundreds of microseconds to

compute; therefore minimum grain size would not appear to be a problem. Vectors can take

CircuitAggregate

Aggregate UserInterfaceFaultSimulator-
Aggregate

FaultSimulator Actor
Circuit/
Dominators

PROOFS class ProperCAD II class ProperPROOFS class

Figure 7.8 ProperPROOFS organization

Table 7.2 Time (ms) of fault simulation operations
Circuit Per Fault Group Per Vector

Mean Variance Min Max Mean Variance Min Max
s382 3.739 0.958 0.132 18.38 5.457 2.711 3.189 22.90
s5378 8.489 8.297 0.249 180.7 140.3 57.21 92.06 692.9
s9234 3.855 3.366 0.969 39.59 497.6 38.65 457.9 550.0
s35932 9.366 23.10 1.254 389.1 2071.3 1185 518.3 5597

135

a significant amount of time to process, up to five seconds on large circuits, thus latency of

delivery should be considered.

Though small grain size did not appear to be a problem, per-vector rescheduling was

implemented. The major reason for this was ease of implementation; the fault-group loop

is deeper within PROOFS, which requires significant saving of state during rescheduling. In

addition, the frequency of fault redistribution is low enough that vector loop latency does not

have a significant impact on run time. Prioritized execution is used to ensure that requests

to split a fault list have higher precedence than the rescheduling request.

7.5.2 Splitting fault lists

While splitting fault lists is conceptually straightforward, implementation withinPROOFS

is more difficult. When faults are split, in addition to the list of faults, several values are re-

quired to restart the simulation on the remote representative:

� the next vector to be simulated.

� the good circuit state. Good circuit state is not saved; therefore it must be transferred

in order for the other representative to restart simulation.

� the good circuit events. Information from the previous time period is stored as a list

of events until incorporated into the good circuit state.

� the faulty circuit states. The only information required between time steps for the

faulty machine are those values of the state elements that differ from the values in the

good circuit.

All this data must be gathered and sent to the remote node. While the amount of infor-

mation appears large, the infrequency of redistribution keeps this from having a significant

impact on execution times.

When the number of undetected faults or unsimulated vectors becomes low, the useful-

ness of splitting faults falls. To restrict communication overhead from growing, a lower

bound is placed on the number of vectors and faults that may be split; if either number falls

below the bound, splitting does not occur. Moreover, once that bound is reached, the rep-

resentative performs the rest of the simulation serially without rescheduling. Lacking this

serial processing of small sets of faults and vectors, as the number of idle processors in-

creases, so many split requests are received and forwarded that the representative has no

time to finish its list of faults.

136

7.5.3 Termination detection

Termination detection is implemented with quiescence, as mentioned above. For qui-

escence to occur, the split requests must be hidden from the quiescence detector through

the representsWork() method described in Subsection 5.2.3. Once this is done, qui-

escence is detected after the last rescheduling task is processed.

7.6 Performance

Table 7.1 shows the results for static partitioning; Tables 7.3, 7.4, and 7.5 show the re-

sults ofProperPROOFSwith dynamic redistribution on an Intel iPSC/860, an Intel Paragon,

and a Sun 4/690MP, respectively. The circuits are drawn from the ISCAS-89 benchmark

set [104]. Test vectors were generated randomly.

Comparison of PROOFS and ProperPROOFS shows that rescheduling and other con-

currency issues contribute little overhead to the fault simulation process. Results for the

message passing machines show moderate speedup for many of the larger circuits. Limi-

tations on scalability and the lack of speedup for some large circuits are considered in Sec-

tion 7.7.

The results for the Sun MP show that while speedup is moderate on two and three pro-

cessors, often little run time improvement is achieved on four processors. Since the message

passing architectures achieve significant performance on a number of circuits for which the

shared memory version does not, differences must be due to the shared memory message

passing mechanism. There are two possibilities for the lack of speedup. The first is the effect

of the redistribution messages, which are transmitted much more quickly in shared memory

than through a network. Since these requests are continually forwarded when there are no

faults to redistribute, they are basically passed at the maximum message passing bandwidth

of the interface. The result is an increase in contention for system resources. The second

issue is general contention in memory. This contention is difficult to evaluate and is a topic

of future interest for the library in general. Alternate fault redistribution schemes that do

not drive the library at maximum bandwidth are also a topic of future work.

In addition to random test patterns, ATPG-generated test patterns were considered. Test

patterns generated by automatic test pattern generators generally simulate differently than

do random test vectors, since ATPG vectors usually result in a much higher number of de-

tections per vector than do random vectors.

Tables 7.6 through 7.8 show the results for ProperPROOFS on deterministic test vec-

tors generated by the STG test generator [129]. The results for ATPG vectors are gener-

137

Table 7.3 ProperPROOFS results on Intel iPSC/860: random vectors

Circuit PROOFS ProperPROOFS
(sec) Processors

(speedup)
1 2 4 8

s208 91.3 0.99 1.46 2.48 4.09
s208o 33.0 0.95 1.00 1.54 1.90
s298 33.5 0.93 1.01 1.26 1.26
s344 41.3 0.92 0.96 0.99 1.04
s349 41.9 0.92 0.96 0.99 1.03
s382 109.2 0.94 1.41 2.18 2.67
s386 25.4 0.93 0.86 1.29 2.07
s400 121.7 0.95 1.47 2.18 2.71
s420 235.7 0.97 1.64 2.86 4.55
s444 142.4 0.96 1.52 2.41 3.08
s510 377.6 0.96 1.77 3.29 5.75
s526 170.0 0.96 1.58 2.43 3.05
s526n 165.4 0.96 1.57 2.32 2.92
s641 53.3 0.96 0.93 1.34 1.45
s713 60.6 0.96 0.95 1.45 1.60
s820 101.9 0.95 1.17 1.52 1.76
s832 104.4 0.94 1.19 1.52 1.75
s838 642.0 1.01 1.84 3.25 5.08
s953 1023 1.02 1.91 3.41 5.73
s1196 50.5 0.97 1.00 1.30 1.34
s1238 62.0 0.97 1.05 1.33 1.47
s1423 358.8 0.98 1.68 2.70 3.93
s1488 192.0 0.98 1.27 1.46 1.53
s1494 194.9 0.96 1.28 1.48 1.54
s5378 1108 0.99 1.61 2.41 3.26
s9234 4517 1.00 1.94 3.52 4.80
s13207 16588 0.99 1.96 3.82 6.91
s15850 8395 0.98 1.92 3.55 5.61
s35932 1124 1.01 1.68 2.34 2.85
s38417 5112 0.97 1.99 3.87 7.31

s15850–s38417: 1000 random vectors
all others: 10000 random vectors

dynamic redistribution

138

Table 7.4 ProperPROOFS results on Intel Paragon: random vectors

Circuit PROOFS ProperPROOFS
(sec) Processors

(speedup)
1 2 4 8 16 32 64

s208 87.6 0.98 1.52 2.59 4.23 6.27 7.29 8.14
s208o 31.4 0.97 1.14 1.67 2.08 2.97 3.06 3.01
s298 32.5 0.94 1.08 1.30 1.28 1.44 1.42 1.44
s344 38.9 0.97 1.02 1.05 1.11 1.14 1.09 1.16
s349 39.4 0.97 1.01 1.04 1.10 1.14 1.17 1.16
s382 107.0 0.97 1.52 2.31 2.84 3.15 3.43 3.47
s386 25.2 0.94 0.99 1.44 2.37 2.80 3.03 3.02
s400 118.1 0.97 1.53 2.29 2.84 3.15 3.46 3.55
s420 230.7 0.97 1.72 2.97 4.71 7.22 9.70 10.6
s444 138.3 0.98 1.58 2.47 3.13 3.69 3.79 4.19
s510 366.2 0.98 1.77 3.34 5.59 7.85 11.4 15.1
s526n 162.0 1.00 1.67 2.43 3.11 3.51 3.82 4.12
s526 166.7 1.00 1.65 2.52 3.16 3.69 4.14 4.33
s641 50.4 0.95 0.95 1.33 1.41 1.42 1.43 1.44
s713 58.0 0.96 0.99 1.44 1.59 1.60 1.58 1.58
s820 101.3 0.98 1.27 1.65 1.90 1.95 2.00 1.95
s832 104.1 0.98 1.30 1.65 1.92 1.98 2.04 2.02
s838 619.2 0.99 1.81 3.22 5.13 7.47 9.99 11.7
s953 959.4 0.99 1.87 3.39 5.69 7.98 11.7 13.7
s1196 48.8 0.95 1.04 1.30 1.33 1.43 1.61 1.59
s1238 59.8 0.95 1.08 1.35 1.50 1.67 1.76 1.89
s1423 356.6 0.99 1.71 2.74 3.89 5.05 6.02 6.37
s1488 190.9 0.97 1.29 1.49 1.55 1.58 1.62 1.65
s1494 194.0 0.98 1.31 1.51 1.58 1.61 1.65 1.70
s5378 1094 1.01 1.63 2.37 3.17 3.35 3.60 3.53
s9234 4716 1.00 1.92 3.48 5.00 7.47 9.47 12.1
s13207 1685 0.98 1.92 3.68 6.46 9.18 13.1 16.0
s15850 1034 0.98 1.87 3.48 5.59 8.22 11.0 13.6
s35932 1105 0.99 1.65 2.27 2.73 3.04 3.21 3.21
s38417 5401 0.99 2.13 4.15 7.82 13.3 21.0 27.7
s38584 3370 0.97 1.89 3.50 5.80 7.53 12.5 15.3

s13207–s38584: 1000 random vectors
all others: 10000 random vectors

dynamic redistribution

139

Table 7.5 ProperPROOFS results on Sun 4/670MP: random vectors

Circuit PROOFS ProperPROOFS
(sec) Processors

(speedup)
1 2 3 4

s208 83.3 0.97 1.50 2.11 2.28
s208o 31.5 1.03 1.16 1.46 1.66
s298 32.3 0.99 1.09 1.12 1.12
s344 35.5 0.94 1.03 1.05 0.92
s349 36.4 0.94 1.04 1.07 0.99
s382 101.7 1.00 1.41 1.74 1.86
s386 24.1 0.89 0.99 1.14 1.29
s400 106.7 1.04 1.59 1.85 1.80
s420 246.6 1.12 1.76 2.53 2.82
s444 122.9 0.96 1.64 1.83 1.99
s510 324.8 1.06 1.82 2.14 2.57
s526n 161.7 1.13 1.88 1.91 2.24
s526 166.9 1.10 1.87 2.01 2.38
s641 41.4 0.93 0.88 0.91 0.97
s713 46.9 0.82 0.79 1.00 1.05
s820 92.7 0.99 1.24 1.29 1.43
s832 95.1 0.99 1.24 1.43 1.30
s838 571.7 1.01 1.95 2.23 2.27
s953 790.5 1.08 1.86 2.07 2.40
s1196 45.9 0.95 1.02 1.27 1.09
s1238 53.4 0.93 1.04 1.17 1.17
s1423 308.0 0.99 1.43 1.68 1.97
s1488 164.9 0.93 1.25 1.40 1.19
s1494 166.2 0.91 1.26 1.35 1.31
s5378 978.7 0.97 1.41 1.75 1.40
s9234 4353 0.97 1.53 1.81 1.77
s13207 17973 1.01 1.79 2.08 2.18
s15850 8684 0.97 1.62 1.95 1.91
s35932 1068 0.91 1.46 1.48 1.62
s38417 8270 0.97 1.41 1.53 1.48
s38584 3519 0.95 1.47 1.77 1.76

s15850–s38584: 1000 random vectors
all others: 10000 random vectors

dynamic redistribution

140

Table 7.6 ProperPROOFS results on Intel iPSC/860: STG vectors

Circuit PROOFS ProperPROOFS
(sec) Processors

(speedup)
1 2 4 8

s208 1.1 0.99 1.33 1.95 3.09
s298 0.7 0.93 0.85 1.29 1.25
s344 0.5 0.91 1.00 1.11 1.16
s349 0.5 0.91 0.98 1.09 1.16
s382 13.2 0.94 1.12 1.30 1.51
s400 10.4 0.94 1.17 1.57 1.88
s420 4.7 0.97 1.64 2.62 3.80
s444 15.4 0.94 1.20 1.48 1.81
s526 9.2 0.95 1.30 1.67 2.03
s526n 6.5 0.94 1.15 1.61 1.70
s641 0.9 0.97 0.99 1.44 1.49
s713 1.0 0.98 1.03 1.65 1.78
s820 3.8 0.94 1.00 1.22 1.37
s832 3.6 0.93 1.00 1.24 1.38
s838 10.9 1.01 1.83 3.13 4.87
s953 1.6 1.01 1.72 2.66 3.36
s1196 3.0 0.99 1.25 1.77 2.16
s1238 3.8 0.98 1.24 1.75 2.13
s1423 3.1 1.00 1.75 2.80 3.34
s1488 11.0 0.99 1.03 1.19 1.25
s1494 9.2 0.98 1.06 1.20 1.29
s5378 47.5 0.99 1.56 2.33 3.23
s9234 1.5 1.01 1.50 2.37 3.50
s35932 154.1 1.00 1.69 2.54 3.43

dynamic redistribution

ally inferior to those of random vectors, which is expected; the amount of fault simulation

required is less since faults are dropped quickly. Additionally, where the added level of de-

tection occurs unevenly, more fault redistribution is required, which increases the amount

of good circuit simulation required.

141

Table 7.7 ProperPROOFS results on Intel Paragon: STG vectors

Circuit PROOFS ProperPROOFS
(sec) Processors

(speedup)
1 2 4 8 16 32 64

s208 1.1 0.99 1.14 2.10 2.73 4.84 1.81 1.06
s298 0.7 0.95 0.81 1.32 1.35 1.30 1.22 0.55
s344 0.5 0.95 0.85 1.19 1.32 1.27 1.08 0.62
s349 0.5 0.95 0.84 1.20 1.28 1.29 1.13 0.63
s382 12.8 0.96 1.17 1.33 1.55 1.86 1.84 1.71
s400 10.0 0.96 1.22 1.59 1.90 2.41 2.43 2.14
s420 4.6 0.98 1.66 2.60 2.53 5.01 6.37 4.61
s444 14.9 0.97 1.25 1.52 1.89 2.26 2.23 2.18
s526 9.0 0.99 1.33 1.76 2.12 2.75 2.83 2.87
s526n 6.3 0.73 1.24 1.70 1.83 2.24 2.38 2.19
s641 1.3 1.37 1.34 1.87 1.88 1.79 1.52 1.12
s713 0.9 0.97 0.81 1.51 1.63 1.64 1.53 1.40
s820 3.8 0.97 1.09 1.31 1.49 1.52 1.53 1.24
s832 3.6 0.97 1.08 1.32 1.53 1.59 1.61 1.53
s838 10.5 0.98 1.78 3.08 3.55 5.07 5.74 10.4
s953 1.5 1.00 1.59 2.39 1.82 2.01 1.06 2.23
s1196 2.9 0.97 1.23 1.77 1.57 1.77 1.74 2.06
s1238 3.7 0.97 1.28 1.79 2.21 2.53 2.68 2.40
s1423 3.0 1.00 1.69 2.75 3.62 3.56 1.45 2.83
s1488 10.9 0.98 1.06 1.20 1.25 1.27 1.29 1.31
s1494 9.2 0.98 1.08 1.24 1.30 1.35 1.34 1.38
s5378 47.0 1.01 1.57 2.25 3.10 3.19 3.32 3.49
s9234 1.5 1.03 1.49 2.32 3.54 4.97 5.70 2.88
s35932 153.2 1.00 1.68 2.41 3.21 3.69 3.80 4.35

dynamic redistribution

7.7 Evaluation

7.7.1 Scalability

Effort was taken to ensure that the fault redistribution scheme inProperPROOFSwould

not limit scalability because of the serialization of a single actor or the resource limitations

and processing power of a single processor. While this effort was successful, the most sig-

nificant barrier to scalability inProperPROOFS is the revaluation of good circuit values on

142

Table 7.8 ProperPROOFS results on Sun 4/670MP: STG vectors

Circuit PROOFS ProperPROOFS
(sec) Processors

(speedup)
1 2 3 4

s208 1.0 0.97 1.48 2.04 2.29
s298 0.7 1.02 1.04 1.18 1.15
s344 0.5 0.90 1.03 1.20 1.01
s349 0.5 0.94 1.07 1.04 0.95
s382 12.4 0.95 1.14 1.04 1.34
s400 9.1 0.99 1.23 1.47 1.50
s420 4.9 1.13 1.75 2.60 2.64
s444 13.8 0.91 1.26 1.24 1.38
s526 9.1 1.07 1.49 1.55 1.73
s526n 6.5 1.12 1.43 1.53 1.56
s641 0.8 0.96 0.97 0.97 0.88
s713 0.8 0.84 0.87 1.02 1.11
s820 3.5 0.95 1.07 1.18 1.12
s832 3.3 0.95 1.05 1.11 1.17
s838 9.8 1.02 1.88 2.08 2.59
s953 1.2 1.10 1.70 1.66 1.64
s1196 2.7 0.95 1.19 1.42 1.34
s1238 3.2 0.94 1.18 1.34 1.33
s1423 2.6 0.99 1.54 1.85 1.73
s1488 9.5 0.94 1.03 1.13 1.06
s1494 8.0 0.92 1.09 1.16 1.01
s5378 42.5 0.98 1.38 1.51 1.45
s9234 1.5 0.92 1.16 1.20 1.10
s35932 149.2 0.92 1.40 1.62 1.58

dynamic redistribution

every processor. Because of this extra evaluation—not needed in the serial case—overhead

grows linearly with the number of processors. This overhead is compounded in Proper-

PROOFS by the fact that fault redistribution implies restarting the good circuit simulation;

the number of good circuit simulations is not bounded by the number of processors.

To investigate issues of scalability, we studied in detail the run time dynamics of s35932

on the Paragon (Table 7.4). While large, this circuit demonstrated only a small amount of

speedup over all configurations. ProperPROOFS was instrumented to record the amount

of time and number of events required by good and faulty circuit simulation. Results are

143

shown in Table 7.9. A study of the number of events evaluated in each case shows that the

the extra effort expended in the parallel version is virtually all due to multiple good circuit

evaluations which do not occur in the serial algorithm. Not only must good circuit simula-

tion be performed per processor, it must also be duplicated in part when a set of faults is re-

distributed. While it was anticipated that communication due to fault redistribution scheme

might be a bottleneck, in practice fault redistribution is infrequent and the redistribution

process itself contributes little overhead. Virtually all of the overhead on large circuits is

incurred by the the extra good circuit simulation on all processors and by the necessity to

duplicate good simulation for all unsimulated vectors when a set of faults is received in re-

sponse to a split request.

The good circuit resimulation overhead caused by fault redistribution effectively limits

the advantage of dynamic redistribution over that of static distribution. Table 7.10 compares

the results of static and dynamic fault distribution. The data show that while the dynamic

redistribution scheme achieves either equivalent or better results than the static case, the

incremental speedup is lower than if fault redistribution incurred no overhead.

We have attempted to develop a scheme for mitigating the extra costs implied by fault

parallelism. For example, the extra simulations caused by load redistribution can be elimi-

nated by saving the state of the good circuit the first time it is computed on each processor

and then by using this saved state in later passes that occur as a result of fault redistribu-

tion. Unfortunately, this approach exhibits two flaws. First, it does not address the issue of

the first good simulation on each processor which is a significant amount of the duplicated

effort on large circuits. Second, the cost of saving the good circuit state for large circuits

Table 7.9 Good and faulty simulation of s35932 on Paragon

Processors Good Faulty
Millions of Events Time (sec) Millions of Events Time (sec)

1 8.04 77.4 34.6 524.2
2 30.1 290.1 34.7 519.3
4 76.5 738.3 34.8 522.9
8 137 1324 35.1 523.4
16 227 2182 35.2 538.9
32 363 3496 35.3 552.3
64 557 5393 35.5 601.7

1000 random vectors
dynamic redistribution

144

Table 7.10 Comparison of static and dynamic fault distribution on iPSC/860

Circuit PROOFS Dynamic Distribution Static Distribution
(sec) Processors Processors

(speedup) (speedup)
1 2 4 8 1 2 4 8

s208 9.1 0.99 1.42 2.38 3.86 0.99 1.51 2.60 4.48
s208o 3.6 0.95 1.00 1.57 1.97 0.95 1.40 1.79 1.98
s298 4.5 0.94 1.02 1.51 1.59 0.94 1.21 1.60 1.62
s344 4.4 0.89 0.99 1.05 1.10 0.89 1.01 1.05 1.10
s349 4.5 0.89 0.98 1.04 1.10 0.89 1.01 1.04 1.09
s382 10.9 0.94 1.37 2.11 2.54 0.94 1.29 1.92 2.38
s386 3.0 0.93 0.89 1.30 2.12 0.93 1.38 1.68 2.19
s400 12.2 0.95 1.42 2.12 2.67 0.95 1.36 1.91 2.45
s420 23.5 0.97 1.62 2.66 4.38 0.97 1.49 2.56 4.43
s444 14.5 0.96 1.48 2.32 2.95 0.96 1.34 2.02 2.84
s510 37.8 0.96 1.76 3.24 5.36 0.96 1.62 2.55 4.41
s526 17.4 0.96 1.56 2.39 2.96 0.96 1.45 1.87 2.52
s526n 16.8 0.96 1.53 2.31 2.89 0.96 1.41 1.88 2.54
s641 5.9 0.96 0.94 1.38 1.57 0.96 1.12 1.50 1.57
s713 6.7 0.97 0.99 1.51 1.73 0.97 1.19 1.58 1.74
s820 11.5 0.96 1.19 1.55 1.78 0.96 1.20 1.54 1.83
s832 11.7 0.95 1.20 1.55 1.83 0.95 1.22 1.55 1.88
s838 63.2 1.01 1.82 3.12 4.84 1.01 1.50 2.55 4.37
s953 101.9 1.03 1.90 3.35 5.64 1.03 1.41 2.66 3.96
s1196 9.9 0.99 1.20 1.72 2.08 0.99 1.41 1.90 2.28
s1238 11.4 0.99 1.27 1.78 2.27 0.99 1.50 2.00 2.51
s1423 46.1 0.98 1.72 2.90 4.37 0.98 1.64 2.70 4.14
s1488 21.5 0.98 1.30 1.51 1.63 0.98 1.26 1.50 1.65
s1494 21.8 0.96 1.31 1.56 1.68 0.96 1.27 1.52 1.67
s5378 150.3 0.99 1.73 2.75 4.30 0.99 1.34 2.19 3.74
s9234 458.8 1.00 1.93 3.50 4.79 1.00 1.60 2.48 2.90
s13207 1598 0.99 1.97 3.81 6.82 0.99 1.38 1.93 3.24
s15850 966.8 0.98 1.92 3.58 5.86 0.98 1.75 2.96 4.88
s35932 1124 1.01 1.68 2.34 2.85 1.01 1.39 1.90 2.43
s38417 5112 0.97 1.99 3.87 7.31 0.97 1.84 3.60 6.49

1000 random vectors

145

and for large numbers of vectors is prohibitive. Other techniques of speeding a very fast

event-driven fault simulator like PROOFS are topics for future study.

7.7.2 Rescheduling

The method of rescheduling worked well for balancing load and required essentially no

tuning. Because the operation of an actor sending a continuation to itself is always a local

operation, rescheduling can be used without regard to the network communication latency

of multicomputers. The same type of rescheduling could be used in ProperHITEC to in-

crease the currency of fault data and would improve performance results. However, in the

HITEC implementation, the point at which rescheduling would occur—when a backtrack

is required—is relatively far down the call stack; therefore, extra effort is required to en-

able exit and return to the same point within the code during rescheduling. In the case of

ProperPROOFS, because the per-vector loop in PROOFS is at a high level no additional

state has to be saved.

7.7.3 Termination detection

As mentioned in Chapter 5, quiescence detection is not a composable property; there-

fore, any use of quiescence in the logic of an algorithm should be examined for limitations.

The quiescence-based termination detection algorithm was developed for ProperPROOFS

to provide experience and knowledge about the usefulness of the termination interface in the

AIF and, in particular, the usefulness of user-level ‘hidden’ tasks as a meta-programmability

feature. Although using quiescence to complete fault simulation is at a high level a simple

problem, its practical implementation exposes various subtle issues, each of which must be

identified—which sometimes requires significant debugging—and handled. In the case of

ProperPROOFS, the utility of termination via quiescence is doubtful. The direct approach

described in Subsection 7.4.2.5 is simpler to implement, composable, and potentially more

efficient. This experience exemplifies the position stated in Chapter 5 that the complexity

and noncomposability of quiescence detection mitigates its utility.

7.7.4 Applicability

The approach taken in this chapter has been the generation of a technique for fault sim-

ulation applications; no attempt was made to specifically address the use of the fault simu-

lator within a test generation application, because both the static interface and the dynamic

146

context differ sufficiently to make some of the techniques applicable to an application in-

applicable in a module to be composed with a test generator. The serial object is still used

within ProperHITEC. Still, though generally the use of a per-thread aggregate would be

considered excessive in a test application, it is clear that as test generation is scaled to larger

machines sizes, the use of a serial object must at some point become a bottleneck; signs

of this limitation were observed in running ProperHITEC. An intermediate approach—

between the alternatives of serial and per-thread—would be to use an aggregate whose size

was a function of the number of threads in the system. For example, one could use a dis-

tribution in which the number of representatives was a fraction of the number of nodes in

the machine. This use represents a direct application of the multiaccess principle proposed

by Chien [5]. Because the fault simulator is already specified as an aggregate, extension

to support other than per-thread distributions would be minor and completely backwardly

compatible with the fault simulator application.

7.7.5 Parallelization Effort

As was the case for ProperHITEC, ProperPROOFS was created through the use of

derivation to express parallelism. Again, the only fundamental change was the modifica-

tion of several functions in the serial code to use dynamic binding in order that those func-

tions could be overridden in derived classes. In the case of ProperPROOFS, only a single

class, FaultSimulator, was modified in this way. Thirteen of the forty-four member

functions where made virtual. Most of these modifications were in the area of gathering the

fault simulation results, which at the end of the simulation is distributed among aggregate

representatives.

ProperPROOFSwas developed later than ProperHITEC, when the library was more

stable, which made measurement of the parallelization process easier. Again, when the time

necessary to clean up the original code is not included, the parallelization effort took approx-

imately one man-month, with additional improvements and debugging requiring approxi-

mately one-half man-month.

Implementation of parallelism of PROOFS required fewer changes than did paralleliza-

tion of HITEC. Table 7.11 reports several metrics of thePROOFS andProperPROOFS im-

plementations. As with ProperHITEC, virtually all the significant classes are shared be-

tween the parallel and serial versions. Among the four new classes, theCircuitAggregate

class is the same as that used in ProperHITEC. A breakdown of the number of actor meth-

ods by class is shown in Table 7.12. Table 7.13 presents the numbers of member functions

147

Table 7.11 Comparison of software metrics for PROOFS and ProperPROOFS

Metric PROOFS ProperPROOFS Shared
Lines of code 455 3938 5659
Lines of code with ‘;’ 140 733 1981
Classes 0 4 12

excluding ActorMethod and argument classes
ActorMethod classes 0 17 0
ActorMethod argument classes 0 5 0

Table 7.12 ActorMethods for each class in ProperPROOFS

Number of
ProperPROOFS class ActorMethods

FaultSimulatorAggregate 7
CircuitAggregate 4
UserInterface 6

in the concurrent types and the serial types from which they are derived. These data again

show that the majority of features in ProperPROOFS are inherited from PROOFS.

Table 7.13 Member functions in PROOFS and ProperPROOFS

Number of Number of
PROOFS class member functions ProperPROOFS class member functions

FaultSimulator 44 FaultSimulator- 16
Aggregate

Circuit 47 CircuitAggregate 6

148

Chapter 8

CONCLUSIONS

We have presented an interface and run time library implementation for concurrent object-

oriented programming suitable for a statically typed language which implements the actor

model of concurrent computation. The interface contains a rich set of interfaces for express-

ing actor computations with emphasis on support for composable meta-programmability.

We demonstrated how a library-based implementation can be used to incrementally paral-

lelize an existing serial code with only incremental increases in development cost.

We have demonstrated the use and efficacy of the library in the parallelization of two

significant CAD applications, ProperHITEC for test generation andProperPROOFS for

fault simulation. We presented results for these applications when they were run on shared

memory, distributed memory, and hybrid architectures. We conclude with some observa-

tions on the effectiveness and efficiency of the interface and implementation.

The features of the library that have proven to be the most effective in expressing paral-

lelism are first class names, first class statically typed continuations, and derivation-based

parallelization. The ability to create, operate on, and interchange actor and aggregate names

has turned out to be very effective in implementing an interface that has a high degree of ex-

pressibility but that does not make code unacceptably interdependent, thus restricting reuse.

We believe that the expressibility of names linked with statically typed continuations will

be key to implementing reusable application libraries that can be easily composed to create

new applications.

Our experiences using derivation to incrementally parallelize existing serial applica-

tions lead us to believe that this feature will be a key to parallelizing existing codes written

in object-oriented languages without doubling development and support costs. For many

medium-grain applications, the added cost of dynamic binding will not be measurable, and

the impact on the expressibility and readability of the serial code will be nominal or positive.

149

The ability to compose meta-programmability features—to use different representations

in modules combined to create a single application—has been useful in the applications ad-

dressed so far and has significant potential in the development of modular solutions to com-

mon problems in VLSI CAD and other domains. Although global meta-programmability

has not yet been used in CAD applications, several ways of capitalizing on the ability to

refine the underlying run time system have generated significant speculation.

A significant reduction in porting difficulty has been achieved at the same time providing

a richer interface which facilitates architectures tuning. This reduction is primarily due to

the implementation of the high-level interface in an open manner and via a well defined,

parameterizable, low-level interface.

In our work using the library, we identified a number of cases that either required te-

dious and possibly error-prone coding techniques or for which expressibility of the current

interface is not sufficient. The two current limitations in the current implementation, the

inability to derive from the Actor class virtually and the inability to cast actor names in a

manner similar to casting pointers have been solved by recent work by the C++ standard-

ization committee. However, the necessity to use macros to implement the library does not

appear to have a solution short of a language extension or a new language. Experience to

date indicates that macros, while inelegant, become acceptable with familiarity.

The basic actor model provides no way of directly expressing an actor method call that

blocks or returns a value. Although continuation passing style is sufficient to express any-

thing requiring a blocking value and in general expresses greater parallelism, there are cases

in which data dependencies preclude parallelism; the use of CPS in those cases can be te-

dious. Although implementation can be difficult and semantics may be difficult to specify,

experience indicates that blocking calls are of sufficiently great utility to justify significant

effort in their design and implementation.

The actor interface provides no direct support for I/O operations, and the APA provides

direct support only for the standard streams, stdout and stderr. A richer interface with

a higher-level, i.e., AIF-level, interface would be valuable.

Although the APA provides a model of the logical interconnection of processors, it does

not capture the relative power or dynamic load of individual processors. For efficient use

of workstation clusters, some method of determining static processing power and dynamic

load will be required. These methods would also simplify the composition of modules. Rep-

resentation of load and power is a significant abstraction problem.

150

REFERENCES

[1] B. Ramkumar and P. Banerjee, “ProperCAD: A portable object-oriented parallel en-
vironment for VLSI CAD,” IEEE Transactions on Computer Aided Design, vol. 13,
pp. 829–842, July 1994.

[2] K. De, B. Ramkumar, and P. Banerjee, “ProperSYN: A portable parallel algorithm for
logic synthesis,” in Digest of Papers, International Conference on Computer-Aided
Design, pp. 412–416, Nov. 1992.

[3] B. Ramkumar and P. Banerjee, “ProperEXT: A portable parallel algorithm for VLSI
circuit extraction,” in Proceedings, 7th International Parallel Processing Sympo-
sium, pp. 434–438, 1993.

[4] S. Kim, “Improved algorithms for cell placement and their parallel implementa-
tions,” Ph.D. dissertation, University of Illinois, Urbana, IL, July 1993.

[5] A. A. Chien, Concurrent Aggregates: Supporting Modularity in Massively Parallel
Programs. Cambridge, MA: The MIT Press, 1993.

[6] G. Agha, “Concurrent object-oriented programming,” Communications of the ACM,
pp. 125–141, Sept. 1990.

[7] Kendall Square Research, KSR-1 Technical Summary, Waltham, MA, 1992.

[8] D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. L. Hennessy, M. Horowitz, and
M. Lam, “The Stanford DASH,” IEEE Computer, vol. 25, pp. 63–79, Mar. 1992.

[9] Intel Supercomputing Systems Division, Paragon XP/S Product Overview, Beaver-
ton, OR, 1991.

[10] L. Lamport, “How to make a multiprocessor computer that correctly executes multi-
process programs,” IEEE Transactions on Computers, pp. 241–248, Sept. 1979.

[11] Thinking Machine Corporation, The Connection Machine CM-5 Technical Summary,
Cambridge, MA, 1991.

[12] P. Pierce and G. Regnier, “The Paragon implementation of the NX message pass-
ing interface,” in Proceedings of the Scalable High-Performance Computing Confer-
ence, pp. 184–190, May 1994.

151

[13] Message Passing Interface Forum, MPI: A Message Passing Interface Standard,
1994. Available as http://www.mcs.anl.gov/mpi/mpi-report.ps.

[14] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore, and V. Sunderam, “PVM
and HeNCE: Tools for heterogeneous network computing,” in Environments and
Tools for Parallel Scientific Computing, vol. 6 of Advances in Parallel Computing,
Amsterdam: North-Holland, 1993, pp. 139–153.

[15] Parasoft Corporation, Express Reference Guide for FORTRAN Programmers,
Pasadena, CA, 1992.

[16] A. W. Appel, Compiling with Continuations. Cambridge, England: Cambridge Uni-
versity Press, 1992.

[17] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active messages:
A mechanism for integrated communication and computation,” in Proceedings of
the 19th Annual International Symposium on Computer Architecture, pp. 256–266,
May 1992.

[18] C. M. Pancake and D. Bergmark, “Do parallel languages respond to the needs of sci-
entific programmers?,” IEEE Computer, vol. 23, pp. 13–23, Dec. 1990.

[19] C. M. Pancake and C. Cook, “What users need in parallel tool support: Survey results
and analysis,” in Proceedings of the Scalable High-Performance Computing Confer-
ence, pp. 40–47, May 1994.

[20] J. R. Corbin, The Art of Distributed Applications, (Sun Technical Reference Library).
New York: Springer-Verlag, 1991.

[21] D. Gannon and J. K. Lee, “Object-oriented parallelism: pC++ ideas and experi-
ments,” in Proceedings of the Japan Society for Parallel Processing, pp. 13–23,
1993.

[22] J. K. Lee and D. Gannon, “Object oriented parallel programming experiments and
results,” in Proceedings, Supercomputing ’91, pp. 273–282, Nov. 1991.

[23] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and B. Mohr,
“Implementing a parallel C++ runtime system for scalable parallel systems,” in Pro-
ceedings, Supercomputing ’93, pp. 588–597, Nov. 1993.

[24] A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, , and F. Bodin, “Performance
analysis of pC++: A portable data-parallel programming system for scalable paral-
lel computers,” in Proceedings, 8th International Parallel Processing Symposium,
pp. 75–84, Apr. 1994.

[25] K. M. Chandy and C. Kesselman, “Compositional C++: Compositional parallel pro-
gramming,” in Proceedings of the 5th Workshop on Compilers and Languages for
Parallel Computing, pp. 79–93, 1992.

152

[26] Concurrent Systems Architecture Group, “Illinois Concert C++ (IC-C++) language
report 1.0,” Department of Computer Science, University of Illinois, Urbana, IL,
Tech. Rep. In preparation.

[27] A. A. Chien, V. Karamcheti, and J. Plevyak, “The Concert system — compiler
and runtime support for efficient, fine-grained concurrent object-oriented programs,”
Department of Computer Science, University of Illinois, Urbana, IL, Tech. Rep.
UIUCDCS-R-93-1815, June 1993.

[28] W. J. Leddy and K. S. Smith, “The design of the experimental systems kernel,” in
Proceedings of the 4th Conference on Hypercubes, Concurrent Computers and Ap-
plications, pp. 10–17, Mar. 1989.

[29] B. Stroustrup, The C++ Programming Language. Reading, MA: Addison-Wesley
Publishing Company, 2nd ed., 1991.

[30] H. Baker and C. Hewitt, “The incremental garbage collection of objects,” in Con-
ference Record of the Conference on AI and Programming Languages, pp. 55–59,
Aug. 1977.

[31] J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Littlefield, “The
Amber system: Parallel programming on a network of multiprocessors,” Depart-
ment of Computer Science and Engineering, University of Washington, Seattle, WA,
Tech. Rep. 89-04-01, Sept. 1989.

[32] B. N. Bershad, E. D. Lazowska, and H. M. Levy, “PRESTO: A system for
object-oriented parallel programming,” Software—Practice and Experience, vol. 18,
pp. 713–731, Aug. 1988.

[33] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,” ACM Trans-
actions on Computer Systems, vol. 2, pp. 39–59, Feb. 1984.

[34] R. Chandra, A. Gupta, and J. L. Hennessy, “Integrating concurrency and data abstrac-
tion in a parallel programming language,” Computer Science Laboratory, Depart-
ments of Electrical Engineering and Computer Science, Stanford University, Stan-
ford, CA, Tech. Rep. CSL-TR-92-511, Feb. 1992.

[35] N. Carriero and D. Gelernter, “Linda in context,” Communications of the ACM,
vol. 32, pp. 444–458, Apr. 1989.

[36] N. Carriero and D. Gelernter, “How to write parallel programs: A guide to the per-
plexed,” ACM Computing Surveys, vol. 21, pp. 323–357, Sept. 1989.

[37] G. Agha and C. Callsen, “ActorSpaces: A model for scalable heterogeneous com-
puting,” in Proceedings of the 26th Hawaii International Conference on System Sci-
ences, 1993.

153

[38] G. Agha and C. J. Callsen, “ActorSpaces: An open distributed programming
paradigm,” in Proceedings of the 4th ACM Symposium on Principles & Practice of
Parallel Processing, pp. 23–32, May 1993.

[39] L. D. Cagan and A. H. Sherman, “Linda unites network systems,” IEEE Spectrum,
vol. 30, pp. 31–35, Dec. 1993.

[40] A. Deshpande and M. Schultz, “Efficient parallel programming in Linda,” in Pro-
ceedings, Supercomputing ’92, pp. 238–244, Nov. 1992.

[41] B. R. Seyfarth, J. L. Bickham, and M. R. Fernandez, “Glenda: An environment for
easy parallel programming,” in Proceedings of the Scalable High-Performance Com-
puting Conference, pp. 637–641, May 1994.

[42] N. H. Gehani and W. D. Roome, “Concurrent C++: Concurrent programming with
class(es),” Software—Practice and Experience, pp. 1157–1177, Dec. 1988.

[43] N. H. Gehani and W. D. Roome, “Implementing concurrent C,” Software—Practice
and Experience, pp. 266–285, Mar. 1992.

[44] M. C. Rinard, D. J. Scales, and M. S. Lam, “Heterogeneous parallel programming in
Jade,” in Proceedings, Supercomputing ’92, pp. 245–256, Nov. 1992.

[45] A. S. Grimshaw, “An introduction to parallel object-oriented programming with
Mentat,” Department of Computer Science, University of Virginia, Charlottesville,
VA, Tech. Rep. TR-91-07, 1991.

[46] The Mentat Research Group, Department of Computer Science, University of Vir-
ginia, Mentat 2.5 Programming Language Reference Manual, Charlottesville, VA,
1993.

[47] P. A. Buhr, G. Ditchfield, R. A. Stroobosscher, and B. M. Younger, “µC++: Con-
currency in the object-oriented language C++,” Software—Practice and Experience,
vol. 22, pp. 137–172, Feb. 1992.

[48] C. M. Chase, A. L. Cheung, A. P. Reeves, and M. R. Smith, “Paragon: A parallel
programming environment for scientific applications using communications struc-
tures,” in Proceedings of the International Conference on Parallel Processing, vol. II,
pp. 211–218, 1991.

[49] C. Baquero and F. Moura, “Concurrency annotations in C++,” SIGPLAN Notices,
vol. 29, pp. 61–67, July 1994.

[50] P. America, “POOL-T: A parallel object-oriented language,” in Object-Oriented
Concurrent Programming, A. Yonezawa and M. Tokoro, Eds., Cambridge, MA: The
MIT Press, 1987, pp. 199–220.

154

[51] G. A. Agha, Actors: A Model of Concurrent Computation in Distributed Systems.
Cambridge, MA: The MIT Press, 1986.

[52] T. Niermann and J. H. Patel, “HITEC: A test generation package for sequential cir-
cuits,” in Proceedings of the European Design Automation Conference, pp. 214–218,
Feb. 1991.

[53] G. Agha, “Semantic considerations in the actor paradigm of concurrent computa-
tion,” Library Notes of Computer Science, vol. 197, pp. 151–179, July 1984.

[54] B. Stroustrup, The Design and Evolution of C++. Reading, MA: Addison-Wesley
Publishing Company, 1994.

[55] Pure Software Inc., Quantify User’s Guide, Sunnyvale, CA, 1993.

[56] M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual. Reading, MA:
Addison-Wesley Publishing Company, 1990.

[57] A. Goldberg and D. Robson, SMALLTALK-80: The Language and its Implementa-
tion. Reading, MA: Addison-Wesley Publishing Company, 1983.

[58] G. Kiczales, J. des Rivières, and D. G. Bobrow, The Art of the Metaobject Protocol.
Cambridge, MA: The MIT Press, 1991.

[59] D. R. Edelson, “Smart pointers: They’re smart, but they’re not pointers,” in USENIX
C++ Technical Conference Proceedings, pp. 1–20, Aug. 1992.

[60] S. Frølund and G. Agha, “A language framework for multi-object coordination,” in
Proceedings of the 1993 European Conference on Object-Oriented Programming,
1993.

[61] G. Agha, S. Frølund, W. Kim, R. Panwar, A. Patterson, and D. Sturman, “Abstrac-
tion and modularity mechanisms for concurrent computing,” IEEE Parallel and Dis-
tributed Technology, pp. 3–13, May 1993.

[62] G. Agha, “An overview of actor languages,” SIGPLAN Notices, vol. 21, pp. 58–67,
Oct. 1986.

[63] P. de Jong, “Compilation into actors,” SIGPLAN Notices, vol. 21, pp. 68–77,
Oct. 1986.

[64] H. Lieberman, “Concurrent object-oriented programming in Act1,” in Object-
Oriented Concurrent Programming, A. Yonezawa and M. Tokoro, Eds., Cambridge,
MA: The MIT Press, 1987, pp. 9–36.

[65] D. Theriault, “Issues in the design and implementation of Act2,” MIT Artificial In-
telligence Laboratory, Cambridge, MA, Tech. Rep. 728, June 1983.

155

[66] E. Shibayama and A. Yonezawa, “Distributed computing in ABCL/1,” in Object-
Oriented Concurrent Programming, A. Yonezawa and M. Tokoro, Eds., Cambridge,
MA: The MIT Press, 1987, pp. 129–158.

[67] J. Ferber and P. Carle, “Actors and agents as reflective concurrent objects: A MER-
ING IV perspective,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 21,
pp. 1420–1436, Nov. 1991.

[68] C. Houck and G. Agha, “HAL: A high-level actor language and its distributed imple-
mentation,” in Proceedings of the International Conference on Parallel Processing,
pp. 158–165, Aug. 1992.

[69] W. Fenton, B. Ramkumar, V. A. Saletore, A. B. Sinha, and L. V. Kalé, “Supporting
machine independent programming on diverse parallel architectures,” in Proceed-
ings of the International Conference on Parallel Processing, Aug. 1991.

[70] A. A. Chien and W. J. Dally, “Concurrent aggregates (CA),” in Proceedings of the
2nd ACM SIGPLAN Symposium on Principles & Practice of Parallel Processing,
pp. 187–196, Mar. 1990.

[71] V. Karamcheti and A. Chien, “Concert — efficient runtime support for concurrent
object-oriented programming languages on stock hardware,” in Proceedings, Super-
computing ’93, pp. 33–36, 1993.

[72] L. V. Kalé, “The Chare Kernel parallel programming language and system,” in Pro-
ceedings of the International Conference on Parallel Processing, vol. II, Aug. 1990.

[73] L. V. Kalé and S. Krishnan, “Charm++: A portable concurrent object oriented system
based on C++,” in Proceedings of the 1993 Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pp. 91–108, Sept. 1993.

[74] L. V. Kalé, B. Ramkumar, V. Saletore, and A. Sinha, “Prioritization in parallel sym-
bolic computing,” Library Notes of Computer Science, 1993.

[75] L. V. Kalé and A. B. Sinha, “Information sharing mechanisms in parallel programs,”
in Proceedings, 8th International Parallel Processing Symposium, pp. 461–468,
Apr. 1994.

[76] A. Gürsoy and L. V. Kalé, “Dagger: Combining benefits of synchronous and asyn-
chronous communication styles,” in Proceedings, 8th International Parallel Pro-
cessing Symposium, pp. 590–596, Apr. 1994.

[77] A. Gürsoy and L. V. Kalé, “High level support for divide-and-conquer parallelism,”
in Proceedings, Supercomputing ’91, pp. 283–292, Nov. 1991.

[78] D. Kafura and K. H. Lee, “ACT++: Building a concurrent C++ with actors,” Journal
of Object-Oriented Programming, pp. 25–37, May 1990.

156

[79] D. G. Kafura and K. H. Lee, “Inheritance in actor based concurrent object-oriented
languages,” The Computer Journal, vol. 32, no. 4, pp. 297–304, 1989.

[80] J. Desbiens, M. Lavoie, S. Pouzyreff, P. Raymond, T. Tamazouzt, and M. Toulouse,
“CLAP: An object-oriented programming system for distributed memory parallel
machines,” OOPS Messenger, vol. 5, pp. 44–48, Jan. 1994.

[81] J. Boykin, D. Kirschen, A. Langerman, and S. LoVerso, Programming Under Mach,
(Addison-Wesley UNIX and Open System Series). Reading, MA: Addison-Wesley
Publishing Company, 1993.

[82] R. A. Gingell, J. P. Moran, and W. A. Shannon, “Virtual memory architecture in
SunOS,” in USENIX Association Conference Proceedings, pp. 81–94, June 1987.

[83] J. B. Postel, “User datagram protocol,” Internet Request For Comments RFC-768,
Aug. 1980. Available as ftp://ds.internic.net/rfc768.txt.

[84] D. E. Comer, Internetworking with TCP/IP Vol I: Principles, Protocols, and Archi-
tecture. Englewood Cliffs, NJ: Prentice Hall, 2nd ed., 1991.

[85] D. E. Comer and D. L. Stevens, Internetworking with TCP/IP Vol II: Design, Imple-
mentations, and Internals. Englewood Cliffs, NJ: Prentice Hall, 1991.

[86] “User datagram protocol,” Internet Request For Comments RFC-791, Sept. 1981.
Available as ftp://ds.internic.net/rfc791.txt.

[87] “Transmission control protocol,” Internet Request For Comments RFC-793,
Sept. 1981. Available as ftp://ds.internic.net/rfc793.txt.

[88] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, (Addison-Wesley Pro-
fessional Computing Series). Reading, MA: Addison-Wesley Publishing Company,
1994.

[89] V. Jacobson, “Congestion avoidance and control,” Computer Communication Re-
view, vol. 18, pp. 314–329, Aug. 1988.

[90] D. C. Lynch and M. T. Rose, Eds., Internet System Handbook. Reading, MA:
Addison-Wesley Publishing Company, 1993.

[91] C. C. Douglas, T. G. Mattson, and M. H. Schultz, “Parallel programming systems
for workstation clusters,” Yale University Department of Computer Science, New
Haven, CT, Tech. Rep. YALEU/DSC/TR-975, Aug. 1993.

[92] F. J. Harrison, “Portable tools and applications for parallel computers,” International
Journal of Quantum Chemistry, pp. 847–863, 1991.

[93] R. Butler and E. Lusk, “User’s guide to the p4 parallel programming system,” Ar-
gonne National Laboratory, Argonne, IL, Tech. Rep. ANL-92/17, June 1992.

157

[94] V. S. Sunderam, “PVM: A framework for parallel distributed computing,” Concur-
rency: Practice and Experience, vol. 2, pp. 315–339, 1990.

[95] R. Konuru, J. Casas, R. Prouty, S. Otto, and J. Walpole, “A user-level process pack-
age for PVM,” in Proceedings of the Scalable High-Performance Computing Con-
ference, pp. 48–55, May 1994.

[96] J. Ferber, “Conceptual reflection and actor languages,” in Meta-Level Architectures
and Reflection, Amsterdam: Elsevier Science Publishers B. V., 1988, pp. 177–193.

[97] M. P. Peercy, “Reconfiguration and recovery in distributed memory multicomputers,”
Ph.D. dissertation, University of Illinois, Urbana, IL, Sept. 1994.

[98] G. Agha, S. Frølund, R. Panwar, and D. Sturman, “A linquistic framework for the dy-
namic composition of dependability protocols,” in Dependable Computing for Crit-
ical Applications 3, Heidelberg: Springer-Verlag, Sept. 1993, pp. 345–363.

[99] S. Krishnan and L. V. Kalé, “Efficient, machine-independent checkpoint and
restart for paralllel programs.” Available as ftp://ftp.cs.uiuc.edu/pub/
CHARM/papers/Checkpoint SC93.ps.Z.

[100] A. B. Sinha, L. V. Kalé, and B. Ramkumar, “A dynamic and adaptive quiescence de-
tection algorithm,” Parallel Programming Laboratory, University of Illinois, Urbana,
IL, Tech. Rep. 93-11, Sept. 1993.

[101] B. Ramkumar, “Machine independent “AND” and “OR” parallel execution of logic
programs,” Ph.D. dissertation, University of Illinois, Urbana, IL, Oct. 1990.

[102] F. Mattern, “Global quiescence detection based on credit distribution and recovery,”
Information Processing Letters, vol. 30, pp. 195–200, Feb. 1989.

[103] H. Abelson and G. J. Sussman, Eds., Structure and Interpretation of Computer Pro-
grams. Cambridge, MA: The MIT Press, 1985.

[104] F. Brglez, D. Bryan, and K. Kominski, “Combinational profiles of sequential bench-
mark circuits,” in Proceedings of the IEEE International Symposium on Circuits and
Systems, June 1989.

[105] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco, CA: W. H. Freeman and Company, 1979.

[106] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving,
(Addison-Wesley Series in Artificial Intelligence). Reading, MA: Addison-Wesley
Publishing Company, 1984.

[107] P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic
circuits,” IEEE Transactions on Computers, vol. 30, pp. 215–222, Mar. 1981.

158

[108] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,” IBM Journal
of Research and Development, vol. 10, pp. 278–291, July 1966.

[109] H. Fujiwara and S. Toida, “The complexity of fault detection problems for com-
binational logic circuits,” IEEE Transactions on Computers, vol. 31, pp. 555–560,
June 1982.

[110] S. Chandra and J. H. Patel, “Test generation in a parallel processing environment,”
in Digest of Papers, International Conference on Computer Design, pp. 11–14,
Oct. 1988.

[111] S. Patil and P. Banerjee, “Fault partitioning issues in an integrated parallel test gen-
eration fault simulation environment,” in Proceedings of the IEEE International Test
Conference, Washington, D.C., pp. 718–727, Aug. 1989.

[112] S. Patil and P. Banerjee, “Performance trade-offs in a parallel test generation fault
simulation environment,” IEEE Transactions on Computer Aided Design, vol. 10,
pp. 1542–1558, Dec. 1991.

[113] S. Patil, P. Banerjee, and J. Patel, “Parallel test generation for sequential circuits on
general-purpose multiprocessors,” in Proceedings of the Design Automation Confer-
ence, June 1991.

[114] P. Agrawal, V. D. Agrawal, and J. Villoldo, “Sequential circuit test generation
on a distributed system,” in Proceedings of the Design Automation Conference,
June 1993.

[115] G. J. Li and B. W. Wah, “MANIP-2: A multicomputer architecture for evaluating
logic programs,” in Proceedings of the International Conference on Parallel Pro-
cessing, pp. 123–130, Aug. 1985.

[116] B. W. Wah, G. J. Li, and C. F. Yu, “Multiprocessing of combinatorial search prob-
lems,” IEEE Computer, vol. 18, pp. 93–108, June 1985.

[117] V. N. Rao and V. Kumar, “Parallel depth first search, part I: Implementation,” Inter-
national Journal of Parallel Processing, vol. 16, no. 6, 1987.

[118] V. N. Rao and V. Kumar, “Parallel depth first search, part II: Analysis,” International
Journal of Parallel Processing, vol. 16, no. 6, 1987.

[119] A. Motohara, K. Nishimura, H. Fujiwara, and I. Shirakawa, “A parallel scheme for
test-pattern generation,” in Digest of Papers, International Conference on Computer-
Aided Design, pp. 156–159, Nov. 1986.

[120] S. Patil and P. Banerjee, “A parallel branch and bound approach to test generation,”
in Proceedings of the Design Automation Conference, Las Vegas, NV, pp. 339–345,
June 1989.

159

[121] S. Patil and P. Banerjee, “A parallel branch and bound algorithm for test generation,”
IEEE Transactions on Computer Aided Design, vol. 9, pp. 313–322, Mar. 1990.

[122] S. Arvindam, V. Kumar, V. N. Rao, and V. Singh, “Automatic test pattern generation
on parallel processors,” Department of Computer Science, University of Minnesota,
Minneapolis, MN, Tech. Rep. TR-90-29, May 1990.

[123] B. Ramkumar and P. Banerjee, “Portable parallel test generation for sequential cir-
cuits,” in Digest of Papers, International Conference on Computer-Aided Design,
pp. 220–223, Nov. 1992.

[124] J. S. Conery, “The AND/OR process model for parallel interpretation of logic pro-
grams,” Ph.D. dissertation, University of California, Irvine, CA, June 1983.

[125] S. Patil, “Parallel algorithms for test generation and fault simulation,” Ph.D. disser-
tation, University of Illinois, Urbana, IL, Sept. 1990.

[126] S. T. Patel and J. H. Patel, “Effectiveness of heuristics measures for automatic
test pattern generation,” in Proceedings of the Design Automation Conference,
pp. 547–552, 1986.

[127] S. J. Chandra and J. H. Patel, “Experimental evaluation of testability measures for
test generation,” IEEE Transactions on Computer Aided Design, vol. 8, pp. 93–97,
Jan. 1989.

[128] R. H. Bell, Jr., R. H. Klenke, J. H. Aylor, and R. D. Williams, “Results of a topolog-
ically partitioned parallel automatic test pattern generation system on a distributed-
memory multiprocessor,” in ASIC ’92, Sept. 1992.

[129] T. M. Niermann, “Techniques for sequential circuit automatic test generation,”
Ph.D. dissertation, University of Illinois, Urbana, IL, Mar. 1991.

[130] E. G. Ulrich and T. Baker, “Concurrent simulation of nearly identical digital net-
works,” IEEE Computer, vol. 7, pp. 39–44, Apr. 1974.

[131] D. B. Armstrong, “A deductive method for simulating faults in logic circuits,” IEEE
Transactions on Computers, vol. 21, pp. 462–471, May 1972.

[132] W.-T. Cheng and M.-L. Yu, “Differential fault simulation — a fast method using min-
imal memory,” in Proceedings of the 26th ACM/IEEE Design Automation Confer-
ence, pp. 424–428, June 1989.

[133] S. Seshu, “On an improved diagnosis program,” IEEE Transactions on Electronic
Computers, vol. 14, pp. 76–79, 1965.

[134] T. M. Niermann, W.-T. Cheng, and J. H. Patel, “PROOFS: A fast, memory efficient
sequential circuit fault simulator,” IEEE Transactions on Computer Aided Design,
pp. 198–207, 1992.

160

[135] P. Banerjee, Parallel Algorithms for VLSI Computer-Aided Design. Englewood
Cliffs, NJ: PTR Prentice Hall, 1994.

[136] P. A. Duba, R. K. Roy, J. A. Abraham, and W. A. Rogers, “Fault simulation in a dis-
tributed environment,” in Proceedings of the 25th ACM/IEEE Design Automation
Conference, pp. 686–691, June 1988.

[137] W. A. Rogers and J. A. Abraham, “CHIEFS: A concurrent hierarchical and exsten-
sible fault simulator,” in Proceedings of the IEEE International Test Conference,
pp. 710–716, 1985.

[138] T. Markas, M. Royals, and N. Kanopoulos, “On distributed fault simulation,” IEEE
Computer, vol. 7, pp. 40–52, Jan. 1990.

[139] L. Soule and T. Blank, “Parallel logic simulation on general purpose machines,” in
Proceedings of the 25th ACM/IEEE Design Automation Conference, pp. 166–171,
June 1988.

[140] R. B. Mueller-Thuns, D. G. Saab, R. F. Damiano, and J. A. Abraham, “Portable par-
allel logic and fault simulation,” in Digest of Papers, International Conference on
Computer-Aided Design, pp. 506–509, Nov. 1989.

[141] J. F. Nelson, “Deductive fault simulation on hypercube multiprocessors,” in Proceed-
ings of the 9th AT&T Conference on Electronic Testing, Oct. 1987.

[142] S. Ghosh, “NODIFS: A novel, distributed circuit partitioning based algorithm for
fault simulation of combinational and sequential digital designs on loosely cou-
pled parallel processors,” LEMS, Division of Engineering, Brown University, Prov-
idence, RI, Tech. Rep., 1991.

[143] S. Patil, P. Banerjee, and J. Patel, “Parallel test generation for sequential circuits on
general purpose multiprocessors,” in Proceedings of the 28th ACM/IEEE Design Au-
tomation Conference, San Fransisco, CA, June 1991.

[144] S. P. Smith, W. Underwood, and M. R. Mercer, “An analysis of several approaches to
circuit partitioning for parallel logic simulation,” in Proceedings of the International
Conference on Computer Design, pp. 664–667, 1987.

[145] C.-P. Kung and C.-S. Lin, “Parallel sequence fault simulation for synchronous se-
quential circuits,” Proceedings of the European Design Automation Conference,
pp. 434–438, Mar. 1992.

[146] E. P. Markatos and T. J. LeBlanc, “Using processor affinity in loop scheduling on
shared-memory multiprocessors,” IEEE Transactions on Parallel and Distributed
Systems, pp. 200–211, Apr. 1994.

161

[147] O. Plata and F. F. Rivera, “Classes versus prototypes in object-oriented languages,” in
Conference Proceedings of the 1994 International Conference on Supercomputing,
pp. 186–194, July 1994.

162

VITA

Steven Michael Parkes attended the University of California, Davis, and received the

B.S. and M.S. degrees in Electrical Engineering in 1982 and 1989, respectively. In 1983,

Parkes joined the Grass Valley Group, Nevada City, California, where he was responsible

for hardware and software design of production digital video equipment. In 1987, Parkes

enrolled in the University of Illinois at Urbana-Champaign; he received the Ph.D. in 1994.

Parkes has received fellowships from the IEEE, Motorola, the Regents of the University

of California, Digital Equipment Corporation, and the National Science Foundation. His

Ph.D. research was supported by the Semiconductor Research Corporation. He has con-

sulted for Xerox and the Grass Valley Group. He is active in parallel and distributed com-

puting, object-oriented and modern programming languages, and CAD.

Parkes is founder and president of Sierra Vista Research, which was founded in 1993

to develop object-oriented environments for concurrent computing. He currently resides in

Los Gatos, California.

