00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 #ifndef MLN_NORM_L1_HH
00027 # define MLN_NORM_L1_HH
00028 
00033 
00034 # include <mln/math/abs.hh>
00035 # include <mln/algebra/vec.hh>
00036 
00037 
00038 namespace mln
00039 {
00040 
00041   namespace norm
00042   {
00043 
00046     template <unsigned n, typename C>
00047     mln_sum_product(C,C) l1(const C (&vec)[n]);
00048 
00049     template <unsigned n, typename C>
00050     mln_sum_product(C,C) l1(const algebra::vec<n,C>& vec);
00052 
00055     template <unsigned n, typename C>
00056     mln_sum_product(C,C) l1_distance(const C (&vec1)[n], const C (&vec2)[n]);
00057 
00058     template <unsigned n, typename C>
00059     mln_sum_product(C,C) l1_distance(const algebra::vec<n,C>& vec1,
00060                            const algebra::vec<n,C>& vec2);
00062 
00063 
00064 # ifndef MLN_INCLUDE_ONLY
00065 
00066     namespace impl
00067     {
00068       template <unsigned n, typename C, typename V>
00069       inline
00070       mln_sum_product(C,C)
00071       l1_(const V& vec)
00072       {
00073         typedef mln_sum_product(C,C) M;
00074         M m = 0;
00075         for (unsigned i = 0; i < n; ++i)
00076           {
00077             M v_i = static_cast<M>(mln::math::abs(vec[i]));
00078             m = static_cast<M>(m + v_i);
00079           }
00080         return m;
00081       }
00082 
00083       template <unsigned n, typename C, typename V>
00084       inline
00085       mln_sum_product(C,C)
00086       l1_distance_(const V& vec1, const V& vec2)
00087       {
00088         typedef mln_sum_product(C,C) D;
00089         D d = 0;
00090         for (unsigned i = 0; i < n; ++i)
00091           {
00092             D v1_v2 = static_cast<D>(mln::math::abs(vec1[i] - vec2[i]));
00093             d = static_cast<D>(d + v1_v2);
00094           }
00095         return d;
00096       }
00097 
00098     } 
00099 
00100 
00101     
00102 
00103 
00104 
00105     template <unsigned n, typename C>
00106     inline
00107     mln_sum_product(C,C)
00108     l1(const C (&vec)[n])
00109     {
00110       return impl::l1_<n, C>(vec);
00111     }
00112 
00113     template <unsigned n, typename C>
00114     inline
00115     mln_sum_product(C,C)
00116     l1(const algebra::vec<n,C>& vec)
00117     {
00118       return impl::l1_<n, C>(vec);
00119     }
00120 
00121     template <unsigned n, typename C>
00122     inline
00123     mln_sum_product(C,C)
00124     l1_distance(const C (&vec1)[n], const C (&vec2)[n])
00125     {
00126       return impl::l1_distance_<n, C>(vec1, vec2);
00127     }
00128 
00129     template <unsigned n, typename C>
00130     inline
00131     mln_sum_product(C,C)
00132     l1_distance(const algebra::vec<n,C>& vec1, const algebra::vec<n,C>& vec2)
00133     {
00134       return impl::l1_distance_<n, C>(vec1, vec2);
00135     }
00136 
00137 # endif // ! MLN_INCLUDE_ONLY
00138 
00139   } 
00140 
00141 } 
00142 
00143 
00144 #endif // ! MLN_NORM_L1_HH