Namespace of linear image processing routines. More...
Namespaces | |
namespace | gaussian |
namespace | impl |
Namespace of linear image processing routines implementation details. | |
namespace | internal |
namespace | local |
Specializations of local linear routines. | |
namespace | my |
Classes | |
struct | ch_convolve |
Functions | |
template<typename I > | |
mln::trait::concrete< I >::ret | gaussian (const Image< I > &input, float sigma) |
Gaussian filter of an image input . | |
template<typename I > | |
mln::trait::concrete< I >::ret | gaussian (const Image< I > &input, float sigma, int dir) |
template<typename I > | |
mln::trait::concrete< I >::ret | gaussian_1d (const Image< I > &input, double sigma, const typename I::value &bdr) |
template<typename I > | |
mln::trait::concrete< I >::ret | gaussian_1st_derivative (const Image< I > &input, float sigma) |
template<typename I > | |
mln::trait::concrete< I >::ret | gaussian_1st_derivative (const Image< I > &input, float sigma, int dir) |
template<typename I > | |
mln::trait::concrete< I >::ret | gaussian_2nd_derivative (const Image< I > &input, float sigma) |
template<typename I > | |
mln::trait::concrete< I >::ret | gaussian_2nd_derivative (const Image< I > &input, float sigma, int dir) |
template<typename I > | |
mln::trait::concrete< I >::ret | gaussian_directional_2d (const Image< I > &input, unsigned dir, double sigma, const typename I::value &bdr) |
template<typename I , typename W , unsigned Sh, unsigned Sv> | |
mln_ch_convolve (I, W) convolve_2x1d(const Image< I > &input | |
template<typename I , typename W > | |
mln_ch_convolve (I, W) convolve(const Image< I > &input | |
template<typename I , typename W , unsigned S> | |
mln_ch_convolve (I, W) convolve_directional(const Image< I > &input | |
template<typename I > | |
mln_ch_convolve_grad (I, int) sobel_2d(const Image< I > &input) | |
Compute the vertical component of the 2D Sobel gradient. | |
template<typename I , typename C > | |
void | recursivefilter_directional_fastest (I &ima, const C &c, const typename I::psite &start, const typename I::psite &finish, int len, const typename I::psite::delta &d, const typename I::value &bdr) |
template<typename I , typename C > | |
void | recursivefilter_directional_generic (I &ima, const C &c, const typename I::psite &start, const typename I::psite &finish, int len, const typename I::psite::delta &d) |
template<typename I > | |
mln_ch_convolve (I, int) sobel_2d_h(const Image< I > &input) | |
Sobel_2d gradient components. | |
Variables | |
unsigned | dir |
W(& | horizontal_weights )[Sh] |
W(W(& | vertical_weights )[Sv] |
const Weighted_Window< W > & | w_win |
unsigned W(& | weights )[S] |
Namespace of linear image processing routines.
mln::trait::concrete< I >::ret mln::linear::gaussian | ( | const Image< I > & | input, | |
float | sigma | |||
) | [inline] |
Gaussian filter of an image input
.
Apply an approximated gaussian filter of sigma
on input
. This filter is applied in all the input image direction.
References mln::exact(), mln::linear::impl::gaussian_norm_coef_(), mln::linear::impl::generic_filter_common_(), and mln::initialize().
Referenced by mln::subsampling::gaussian_subsampling().
mln::trait::concrete< I >::ret mln::linear::gaussian | ( | const Image< I > & | input, | |
float | sigma, | |||
int | dir | |||
) | [inline] |
Apply an approximated gaussian filter of sigma
on input
. on a specific direction dir
if dir
= 0, the filter is applied on the first image dimension. if dir
= 1, the filter is applied on the second image dimension. And so on...
References mln::exact(), mln::linear::impl::gaussian_norm_coef_(), mln::linear::impl::generic_filter_common_(), and mln::initialize().
mln::trait::concrete< I >::ret mln::linear::gaussian_1d | ( | const Image< I > & | input, | |
double | sigma, | |||
const typename I::value & | bdr | |||
) | [inline] |
mln::trait::concrete< I >::ret mln::linear::gaussian_1st_derivative | ( | const Image< I > & | input, | |
float | sigma | |||
) | [inline] |
Apply an approximated first derivative gaussian filter of sigma
on input
This filter is applied in all the input image direction.
References mln::exact(), mln::linear::impl::gaussian_1st_deriv_coef_norm_(), mln::linear::impl::generic_filter_common_(), and mln::initialize().
mln::trait::concrete< I >::ret mln::linear::gaussian_1st_derivative | ( | const Image< I > & | input, | |
float | sigma, | |||
int | dir | |||
) | [inline] |
Apply an approximated first derivative gaussian filter of sigma
on input
. on a specific direction dir
if dir
= 0, the filter is applied on the first image dimension. if dir
= 1, the filter is applied on the second image dimension. And so on...
References mln::exact(), mln::linear::impl::gaussian_1st_deriv_coef_norm_(), mln::linear::impl::generic_filter_common_(), and mln::initialize().
mln::trait::concrete< I >::ret mln::linear::gaussian_2nd_derivative | ( | const Image< I > & | input, | |
float | sigma | |||
) | [inline] |
Apply an approximated second derivative gaussian filter of sigma
on input
This filter is applied in all the input image direction.
References mln::exact(), mln::linear::impl::gaussian_2nd_deriv_coef_norm_(), mln::linear::impl::generic_filter_common_(), and mln::initialize().
mln::trait::concrete< I >::ret mln::linear::gaussian_2nd_derivative | ( | const Image< I > & | input, | |
float | sigma, | |||
int | dir | |||
) | [inline] |
Apply an approximated second derivative gaussian filter of sigma
on input
. on a specific direction dir
if dir
= 0, the filter is applied on the first image dimension. if dir
= 1, the filter is applied on the second image dimension. And so on...
References mln::exact(), mln::linear::impl::gaussian_2nd_deriv_coef_norm_(), mln::linear::impl::generic_filter_common_(), and mln::initialize().
mln::trait::concrete< I >::ret mln::linear::gaussian_directional_2d | ( | const Image< I > & | input, | |
unsigned | dir, | |||
double | sigma, | |||
const typename I::value & | bdr | |||
) | [inline] |
mln::linear::mln_ch_convolve | ( | I | , | |
int | ||||
) | const [inline] |
Sobel_2d gradient components.
Compute the L1 norm of the 2D Sobel gradient.
Compute the vertical component of the 2D Sobel gradient.
Compute the horizontal component of the 2D Sobel gradient.
References mln::trace::entering(), mln::exact(), mln::trace::exiting(), mln_ch_convolve(), mln_ch_convolve_grad(), and mln::data::transform().
mln::linear::mln_ch_convolve | ( | I | , | |
W | ||||
) | const |
Convolution of an image input
by two weighted line-shapes windows.
mln::linear::mln_ch_convolve | ( | I | , | |
W | ||||
) | const |
Convolution of an image input
by the weighted window w_win
.
output(p)
is performed with the value type of output
.Referenced by mln_ch_convolve(), and mln_ch_convolve_grad().
mln::linear::mln_ch_convolve | ( | I | , | |
W | ||||
) | const [inline] |
Convolution of an image input
by a line-shaped (directional) weighted window defined by the array of weights
.
output(p)
is performed with the value type of output
.mln::linear::mln_ch_convolve_grad | ( | I | , | |
int | ||||
) | const |
Compute the vertical component of the 2D Sobel gradient.
References mln::trace::entering(), mln::exact(), mln::trace::exiting(), mln_ch_convolve(), and mln::data::transform().
Referenced by mln_ch_convolve().
void mln::linear::recursivefilter_directional_fastest | ( | I & | ima, | |
const C & | c, | |||
const typename I::psite & | start, | |||
const typename I::psite & | finish, | |||
int | len, | |||
const typename I::psite::delta & | d, | |||
const typename I::value & | bdr | |||
) | [inline] |
Referenced by gaussian_1d(), and gaussian_directional_2d().
void mln::linear::recursivefilter_directional_generic | ( | I & | ima, | |
const C & | c, | |||
const typename I::psite & | start, | |||
const typename I::psite & | finish, | |||
int | len, | |||
const typename I::psite::delta & | d | |||
) | [inline] |
unsigned mln::linear::dir |
W( W(& mln::linear::vertical_weights)[Sv] |
const Weighted_Window<W>& mln::linear::w_win |
unsigned W(& mln::linear::weights)[S] |