Vaucanson 1.4
|
00001 // equivalent.hxx: this file is part of the Vaucanson project. 00002 // 00003 // Vaucanson, a generic library for finite state machines. 00004 // 00005 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 The Vaucanson Group. 00006 // 00007 // This program is free software; you can redistribute it and/or 00008 // modify it under the terms of the GNU General Public License 00009 // as published by the Free Software Foundation; either version 2 00010 // of the License, or (at your option) any later version. 00011 // 00012 // The complete GNU General Public Licence Notice can be found as the 00013 // `COPYING' file in the root directory. 00014 // 00015 // The Vaucanson Group consists of people listed in the `AUTHORS' file. 00016 // 00017 #ifndef VCSN_ALGORITHMS_EQUIVALENT_HXX 00018 # define VCSN_ALGORITHMS_EQUIVALENT_HXX 00019 00020 # include <vaucanson/algorithms/equivalent.hh> 00021 # include <vaucanson/algorithms/determinize.hh> 00022 # include <vaucanson/algorithms/is_deterministic.hh> 00023 # include <vaucanson/algorithms/complement.hh> 00024 # include <vaucanson/algorithms/complete.hh> 00025 # include <vaucanson/algorithms/trim.hh> 00026 # include <vaucanson/algorithms/product.hh> 00027 00028 # include <vaucanson/algebra/implementation/series/rat/exp.hh> 00029 # include <vaucanson/misc/usual_macros.hh> 00030 00031 00032 namespace vcsn 00033 { 00034 00035 template<typename SA, typename A, 00036 typename SB, typename B> 00037 bool 00038 do_are_equivalent(const AutomataBase<SA>&, const A& a, 00039 const AutomataBase<SB>&, const B& b) 00040 { 00041 A pos_a(a); 00042 B pos_b(b); 00043 00044 if (not is_realtime(pos_a)) 00045 realtime_here(pos_a); 00046 if (not is_realtime(pos_b)) 00047 realtime_here(pos_b); 00048 00049 // L(a) = L(b) \iff (L(b) \subset L(a) \land L(a) \subset L(b)) 00050 00051 // L(b) \subset L(a) \iff \overline{L(a)}\cap L(b)=\emptyset 00052 // We compute the latter with complement and product. 00053 A neg_a(pos_a); 00054 if (not is_deterministic(neg_a)) 00055 neg_a = determinize(neg_a); 00056 else if (not is_complete(neg_a)) 00057 complete_here(neg_a); 00058 complement_here(neg_a); 00059 if (trim(product(neg_a, pos_b)).states().size() != 0) 00060 return false; 00061 00062 // L(a) \subset L(b) \iff L(a)\cap\overline{L(b)}=\emptyset 00063 A neg_b(pos_b); 00064 if (not is_deterministic(neg_b)) 00065 neg_b = determinize(neg_b); 00066 else if(not is_complete(neg_b)) 00067 complete_here(neg_b); 00068 complement_here(neg_b); 00069 return (trim(product(pos_a, neg_b)).states().size() == 0); 00070 } 00071 00072 00073 template<typename S, typename A, typename B> 00074 bool 00075 are_equivalent(const Element<S, A>& a, const Element<S, B>& b) 00076 { 00077 return do_are_equivalent(a.structure(), a, 00078 b.structure(), b); 00079 } 00080 00081 } // vcsn 00082 00083 #endif // ! VCSN_ALGORITHMS_EQUIVALENT_HXX