Vaucanson 1.4
|
Classes | |
struct | KRatExpFlatten< Series, T, Dispatch > |
struct | linearize_element< S, T > |
The types of a linearized expression. More... | |
struct | FindBestSearch |
Specific implementation for search(). More... | |
struct | WindowedBackSearch |
Specific implementation for search(). More... | |
Files | |
file | accessible.hh |
Algorithms for accessible/coaccessible states computation. | |
file | aci_canonical.hh |
Declaration for the canonical() algorithm. | |
file | aut_projection.hh |
Projections for automata that support it (it depends on the letter type). | |
file | aut_to_exp.hh |
This file provides converter from automaton to expression. | |
file | berry_sethi.hh |
Contains the declaration for the Berry-Sethi algorithm. | |
file | brzozowski.hh |
Contains the declaration for the Brzozowski algorithm. | |
file | complement.hh |
Complementation algorithm for Boolean automata. | |
file | complete.hh |
Testing and building complete automata. | |
file | composition_cover.hh |
Composition for normalized and sub-normalized transducers seen as automata over a free monoid product. | |
file | derived_term_automaton.hh |
Provides a converter from expression to automaton based on derivatives. | |
file | determinize.hh |
Boolean automata determinization. | |
file | domain.hh |
Domain algorithm. | |
file | eps_removal.hh |
This files declares the backward and forward eps_removal algorithm. | |
file | eps_removal_sp.hh |
This files declares the backward and forward eps_removal algorithm. | |
file | equivalent.hh |
This file contains the declarations for the are_equivalent() algorithm. | |
file | eval.hh |
This file provides the evaluation of a word w.r.t an automaton. | |
file | evaluation_fmp.hh |
Evaluation over normalized and sub-normalized transducers seen as automata over a free monoid product. | |
file | evaluation_rw.hh |
Evaluation of an RW transducer over a realtime automaton. | |
file | extension.hh |
Declarations for extension(). | |
file | factor.hh |
Compute an automaton which accepts any factor of the language accepted by the given automaton. | |
file | finite_support_conversion.hh |
Conversion between finite support application types. | |
file | fmp_to_rw.hh |
This file provides a transformation function that computes the Rational Weight transducer of a FMP automaton. | |
file | image.hh |
Image projection for transducers. | |
file | infiltration.hh |
Declarations of infiltration(). | |
file | initial_derivation.hh |
Declaration of the initial derivation visitor, used for smart_derivative_automaton. | |
file | evaluation.hh |
Internal functions used by the rw_composition algorithm. | |
file | outsplitting.hh |
Outsplitting and insplitting algorithms for normalized and sub-normalized fmp_transducers. | |
file | is_ambiguous.hh |
Test for ambiguity. | |
file | is_deterministic.hh |
Boolean automata determinization. | |
file | is_empty.hh |
Declaration of is_empty(). | |
file | is_ltl.hh |
Letter-to-letter feature testing. | |
file | is_normalized.hh |
Test for transducer normalization. | |
file | is_trim.hh |
Declaration of is_trim() | |
file | is_useless.hh |
Declaration of is_useless(). | |
file | isomorph.hh |
This files contains the declaration for the are_isomorphic() algorithm. | |
file | krat_exp_cderivation.hh |
Declaration for the cderivate() algorithms. | |
file | krat_exp_constant_term.hh |
Declaration for the constant_term() algorithm. | |
file | krat_exp_derivation.hh |
Declaration for the derivate() algorithms. | |
file | krat_exp_expand.hh |
Expand a k-rational-expression. | |
file | krat_exp_flatten.hh |
This file holds the declaration of the flatten() algorithm. | |
file | krat_exp_linearize.hh |
Declarations for the linearize() algorithm. | |
file | krat_exp_partial_derivation.hh |
Declarations for the partial_derivate() algorithm. | |
file | krat_exp_realtime.hh |
Declarations of the realtime() algorithm for rational expressions. | |
file | letter_to_letter_composition.hh |
Undocumented stuff. | |
file | ltl_to_pair.hh |
This file provides a transformation function that computes the pair letter automaton of an FMP automaton. | |
file | minimization_hopcroft.hh |
This file provides minimization and quotient algorithms. | |
file | minimization_moore.hh |
This file containes the declaration of minimization_moore(). | |
file | normalized.hh |
Thompson normalization operations. | |
file | normalized_composition.hh |
Composition for normalized and sub-normalized transducers seen as automata over a free monoid product. | |
file | one_eps_closure.hh |
This file declares the backward and forward one_eps_closure algorithm. | |
file | pair_to_fmp.hh |
This file provides a transformation function that computes the FMP transducer of a pair letter automaton. | |
file | prefix.hh |
Compute an automaton which accepts any prefix of the language accepted by the given automaton. | |
file | product.hh |
Declarations of product(). | |
file | projection.hh |
Build an FMP transducer that realizes the identity relation. | |
file | realtime.hh |
General algorithms concerning realtime aspect of automata. | |
file | realtime_decl.hh |
Declaration of the realtime() function. | |
file | reduce.hh |
This files declares the reduce algorithm. | |
file | rw_composition.hh |
Composition of two Rational-Weight transducers. | |
file | rw_to_fmp.hh |
This file provides a transformation function that computes the equivalent FMP automaton of a Rational Weight tranducer. | |
file | search.hh |
Rational expression search in text. | |
file | shortest.hh |
Algorithms for enumeration of short words in a language. | |
file | shuffle.hh |
Declarations of shuffle(). | |
file | standard.hh |
Several algorithms concerning standard automata. | |
file | standard_of.hh |
This file provides a converter from expression to standard automaton. | |
file | sub_automaton.hh |
This file provides the extraction of sub automaton. | |
file | sub_normalize.hh |
Sub-normalization algorithm for FMP transducers. | |
file | suffix.hh |
Compute an automaton which accepts any suffix of the language accepted by the given automaton. | |
file | thompson.hh |
The thompson automaton. | |
file | algorithms/transpose.hh |
This file contains the function which transposes an automaton. | |
file | trim.hh |
Declaration of useful_states() and trim(). | |
file | universal.hh |
Universal automaton for Boolean rational languages. | |
Functions | |
template<typename A , typename AI > | |
std::set< typename Element< A, AI >::hstate_t > | accessible_states (const Element< A, AI > &a) |
Return accessible states. | |
template<typename A , typename AI > | |
Element< A, AI > | accessible (const Element< A, AI > &a) |
Extract the sub-automaton composed of accessible states. | |
template<typename A , typename AI > | |
void | accessible_here (Element< A, AI > &a) |
In-place extract the sub-automaton of accessible states. | |
template<typename A , typename AI > | |
std::set< typename Element< A, AI >::hstate_t > | coaccessible_states (const Element< A, AI > &a) |
Return co-accessible states. | |
template<typename A , typename AI > | |
Element< A, AI > | coaccessible (const Element< A, AI > &a) |
Extract the sub-automaton composed of co-accessible states. | |
template<typename A , typename AI > | |
void | coaccessible_here (Element< A, AI > &a) |
In-place extract the sub-automaton of co-accessible states. | |
template<typename S , typename SI > | |
Element< S, SI > | canonical (const Element< S, SI > &exp) |
Transform a krat expression into a canonical form using only ACI-rules. | |
template<typename A , typename AI > | |
Element< A, AI >::series_set_elt_t | aut_to_exp (const Element< A, AI > &a) |
Returns a series which describes the language of the automaton. | |
template<typename A , typename AI , typename Chooser > | |
Element< A, AI >::series_set_elt_t | aut_to_exp (const Element< A, AI > &a, const Chooser &c) |
Returns a series which describes the language of the automaton. | |
template<typename A , typename T , typename Exp > | |
void | berry_sethi (Element< A, T > &, const Exp &) |
Build an automaton from an expression using the Berry-Sethi construction. | |
template<typename A , typename T , typename Exp > | |
void | brzozowski (Element< A, T > &, const Exp &) |
Build an automaton from an expression using the Brzozowski construction. | |
template<typename A , typename AI > | |
void | complement_here (Element< A, AI > &a) |
Complement in place the set of final states. | |
template<typename A , typename AI > | |
Element< A, AI > | complement (const Element< A, AI > &a) |
Complement the set of final states. | |
template<typename A , typename AI > | |
void | complete_here (Element< A, AI > &a) |
Make the transition function of an automaton total w.r.t. | |
template<typename A , typename AI > | |
Element< A, AI > | complete (const Element< A, AI > &a) |
Make the transition function of an automaton total w.r.t. | |
template<typename A , typename AI > | |
bool | is_complete (const Element< A, AI > &a) |
Test whether an automaton is complete. | |
template<typename S , typename T > | |
Element< S, T > | composition_cover (const Element< S, T > &fmp) |
Facade for composition cover. | |
template<typename S , typename T > | |
Element< S, T > | composition_co_cover (const Element< S, T > &fmp) |
Facade for composition co-cover. | |
template<typename A , typename T , typename Exp > | |
void | derived_term_automaton (Element< A, T > &a, const Exp &e) |
Convert a krat expression into an automaton using derivatives. | |
template<typename A , typename T , typename Exp > | |
Element< A, T > | derived_term_automaton (const Exp &e) |
Convert a krat expression into an automaton using derivatives. | |
template<typename A , typename T , typename Exp > | |
Element< A, T > | broken_derived_term_automaton (const Exp &e) |
Convert a krat expression into an automaton using derivatives. | |
template<typename A , typename AI > | |
bool | is_proper (const Element< A, AI > &a) |
Test whether an automaton is proper. | |
template<typename A , typename AI > | |
void | eps_removal_here (Element< A, AI > &a, misc::direction_type dir=misc::backward) |
In place eps_removal of an automaton (default is backward eps_removal). | |
template<typename A , typename AI > | |
Element< A, AI > | eps_removal (const Element< A, AI > &a, misc::direction_type dir=misc::backward) |
Eps_Removal of an automaton (default is backward eps_removal). | |
template<typename A , typename AI > | |
void | backward_eps_removal_here (Element< A, AI > &a) |
In place backward eps_removal of an automaton. | |
template<typename A , typename AI > | |
Element< A, AI > | backward_eps_removal (const Element< A, AI > &a) |
Backward eps_removal of an automaton. | |
template<typename A , typename AI > | |
void | forward_eps_removal_here (Element< A, AI > &a) |
In place forward eps_removal of an automaton. | |
template<typename A , typename AI > | |
Element< A, AI > | forward_eps_removal (const Element< A, AI > &a) |
Forward eps_removal of an automaton. | |
template<typename A , typename AI > | |
void | eps_removal_here_sp (Element< A, AI > &a, misc::direction_type dir=misc::backward) |
In place eps_removal_sp of an automaton (default is backward eps_removal). | |
template<typename A , typename AI > | |
Element< A, AI > | eps_removal_sp (const Element< A, AI > &a, misc::direction_type dir=misc::backward) |
Eps_Removal of an automaton (default is backward eps_removal). | |
template<typename A , typename AI > | |
void | backward_eps_removal_here_sp (Element< A, AI > &a) |
In place backward eps_removal_sp of an automaton. | |
template<typename A , typename AI > | |
Element< A, AI > | backward_eps_removal_sp (const Element< A, AI > &a) |
Backward eps_removal_sp of an automaton. | |
template<typename A , typename AI > | |
void | forward_eps_removal_here_sp (Element< A, AI > &a) |
In place forward eps_removal_sp of an automaton. | |
template<typename A , typename AI > | |
Element< A, AI > | forward_eps_removal_sp (const Element< A, AI > &a) |
Forward eps_removal_sp of an automaton. | |
template<typename S , typename A , typename B > | |
bool | are_equivalent (const Element< S, A > &a, const Element< S, B > &b) |
Returns true iff the two boolean automata are equivalents, i.e., if they recognize the same language. | |
template<typename A , typename AI , typename W > | |
Element< A, AI >::semiring_elt_t | eval (const Element< A, AI > &a, const W &word) |
Return the image of a word by an automaton. | |
template<typename ST , typename TT > | |
void | evaluation_fmp (const Element< ST, TT > &trans, const typename input_projection_helper< ST, TT >::ret &aut, typename output_projection_helper< ST, TT >::ret &res) |
Evaluation over normalized and sub-normalized transducers, seen as automata over a free monoid product. | |
template<typename SA , typename TA , typename ST , typename TT , typename SRET , typename TRET > | |
void | evaluation_rw (const Element< SA, TA > &a, const Element< ST, TT > &t, Element< SRET, TRET > &ret) |
Evaluate for a "letterized" automaton and a realtime transducer. | |
template<typename S , typename K , typename T > | |
identity_transducer_helper< S, K, T >::ret | extension (const Element< S, T > &) |
Extend an automaton to a transducer. | |
template<typename SA , typename TA , typename ST , typename TT > | |
Element< ST, TT > | extension (const Element< SA, TA > &, const Element< ST, TT > &) |
Extend an automaton to a transducer. | |
template<typename A , typename AI > | |
void | factor_here (const Element< A, AI > &a) |
Make every states of the automaton initial and final states (in place). | |
template<typename A , typename AI > | |
Element< A, AI > | factor (const Element< A, AI > &a) |
Make every states of the automaton initial and final states. | |
template<typename S , typename T , typename Ss , typename Ts > | |
void | finite_support_convert (Element< S, T > &dst, const Element< Ss, Ts > &org) |
Finite support conversion. | |
template<typename SA , typename TA , typename M > | |
void | partial_elimination (const Element< SA, TA > &a, M &state_exp_pair) |
This function computes a set of expression, after having eliminated all states which are not initial or final. | |
template<typename S1 , typename T1 , typename S2 , typename T2 , typename M > | |
void | partial_evaluation (const Element< S1, T1 > &E, const Element< S2, T2 > &S, const typename Element< S2, T2 >::hstate_t &p, M &res) |
Partial evaluation of a K RatExp E over a realtime transducer S, starting from a given state p. | |
template<typename A , typename AI > | |
bool | is_ambiguous (const Element< A, AI > &aut) |
Test the ambiguity of automaton. | |
template<typename A , typename AI > | |
bool | is_deterministic (const Element< A, AI > &a) |
Test if an automaton is deterministic. | |
template<typename A , typename AI > | |
bool | is_empty (const Element< A, AI > &a) |
Evaluate if an automaton is empty. | |
template<typename S , typename A > | |
bool | is_ltl (const Element< S, A > &t) |
Test whether an FMP transducer is letter-to-letter. | |
template<typename S , typename A > | |
bool | is_normalized_transducer (const Element< S, A > &t) |
Test the normalization of transducer. | |
template<typename A , typename AI > | |
bool | is_trim (const Element< A, AI > &a) |
Return true is all states are reachable and co-reachable. | |
template<typename A , typename AI > | |
bool | is_useless (const Element< A, AI > &a) |
Return true if the automaton has no successful computation. | |
template<typename A , typename T > | |
bool | are_isomorphic (const Element< A, T > &a, const Element< A, T > &b) |
Returns true if the two automata are isomorphic. | |
template<class Series , class T , class Letter > | |
Element< Series, T > | cderivate (const Element< Series, T > &exp, Letter a) |
The c-derivative of the krat expression w.r.t to a letter. | |
template<class Series , class T , class Word > | |
Element< Series, T > | word_cderivate (const Element< Series, T > &exp, Word a) |
The c-derivative of the krat expression w.r.t to a word. | |
template<class Series , class T > | |
std::pair< typename Element < Series, T >::semiring_elt_t, bool > | constant_term (const Element< Series, T > &exp) |
Return the constant term of the krat expression. | |
template<class Series , class T , class Letter > | |
std::pair< Element< Series, T > , bool > | derivate (const Element< Series, T > &exp, Letter a) |
The antimirov derivative of the krat expression w.r.t to a letter. | |
template<class Series , class T , class Word > | |
std::pair< Element< Series, T > , bool > | word_derivate (const Element< Series, T > &exp, Word a) |
The antimirov derivative of the krat expression w.r.t to a word. | |
template<class Series , class T > | |
std::list< typename Series::monoid_t::alphabet_t::letter_t > | flatten (const Element< Series, T > &exp) |
This algorithm extracts the letters from a rational expression. | |
template<class Series , class T > | |
linearize_element< Series, T > ::element_t | linearize (const Element< Series, T > &exp) |
The linearization of the krat expression. | |
template<class Series , class T , class Letter > | |
std::pair< std::set< Element < Series, T > >, bool > | partial_derivate (const Element< Series, T > &exp, Letter a) |
The partial derivative of the krat expression w.r.t to a letter. | |
template<class S , class T > | |
Element< S, T > | letter_to_letter_composition (const Element< S, T > &lhs, const Element< S, T > &rhs) |
Undocumented. | |
template<typename A , typename AI > | |
Element< A, AI > | minimization_hopcroft (const Element< A, AI > &a) |
Return the minimal automaton using the hopcroft algorithm. | |
template<typename A , typename AI > | |
Element< A, AI > | quotient (const Element< A, AI > &a) |
Return the quotient of a non-deterministic acceptor. | |
template<typename A , typename AI > | |
Element< A, AI > | minimization_moore (const Element< A, AI > &a) |
Returns the minimal deterministic automaton associated to the input one. | |
template<typename A , typename AI > | |
Element< A, AI > | co_minimization_moore (const Element< A, AI > &a) |
Returns the co-minimal co-deterministic automaton associated to the input one. | |
template<typename A , typename AI > | |
void | minimization_moore_here (Element< A, AI > &a) |
Minimalize the deterministic input automaton. | |
template<typename A , typename AI > | |
void | co_minimization_moore_here (Element< A, AI > &a) |
Co-minimalize the co-deterministic input automaton. | |
template<typename A , typename AI > | |
Element< A, AI > | normalize (const Element< A, AI > &a) |
Return the fresh thompson-normalized automaton. | |
template<typename A , typename AI > | |
void | normalize_here (Element< A, AI > &a) |
In-place normalize to the thompson form. | |
template<typename A , typename AI > | |
bool | is_normalized (const Element< A, AI > &a) |
Return true if the input automaton is thompson-normalized. | |
template<typename A , typename AI1 , typename AI2 > | |
void | union_of_normalized_here (Element< A, AI1 > &lhs, const Element< A, AI2 > &rhs) |
Do the in-place union of two thompson-normalized automata. | |
template<typename A , typename AI1 , typename AI2 > | |
Element< A, AI1 > | union_of_normalized (const Element< A, AI1 > &lhs, const Element< A, AI2 > &rhs) |
Return the fresh union of two thompson-normalized automata. | |
template<typename A , typename AI1 , typename AI2 > | |
void | concatenate_of_normalized_here (Element< A, AI1 > &lhs, const Element< A, AI2 > &rhs) |
Do the in-place concatenation of two thompson-normalized automata. | |
template<typename A , typename AI1 , typename AI2 > | |
Element< A, AI1 > | concatenate_of_normalized (const Element< A, AI1 > &lhs, const Element< A, AI2 > &rhs) |
Return the fresh concatenation of two thompson-normalized automata. | |
template<typename A , typename AI > | |
void | star_of_normalized_here (Element< A, AI > &a) |
Do in-place star transformation on the thompson-normalized input. | |
template<typename A , typename AI > | |
Element< A, AI > | star_of_normalized (const Element< A, AI > &a) |
Return the fresh star transformation of its normalized input. | |
template<typename S , typename T > | |
void | compose (const Element< S, T > &lhs, const Element< S, T > &rhs, Element< S, T > &ret) |
Composition for weighted normalized and sub-normalized transducers, seen as automata over a free monoid product. | |
template<typename S , typename T > | |
Element< S, T > | compose (const Element< S, T > &lhs, const Element< S, T > &rhs) |
Composition for weighted normalized and sub-normalized transducers, seen as automata over a free monoid product. | |
template<typename S , typename T > | |
void | u_compose (const Element< S, T > &lhs, const Element< S, T > &rhs, Element< S, T > &ret) |
Unambiguous composition for weighted normalized and sub-normalized transducers, seen as automata over a free monoid product. | |
template<typename S , typename T > | |
Element< S, T > | u_compose (const Element< S, T > &lhs, const Element< S, T > &rhs) |
Unambiguous composition for weighted normalized and sub-normalized transducers, seen as automata over a free monoid product. | |
template<typename A , typename AI , typename EPS > | |
void | one_eps_closure (Element< A, AI > &a, const EPS &eps, misc::direction_type dir=misc::backward) |
In place one_eps_closure of an automaton (default is backward eps_closure). | |
template<typename A , typename AI , typename EPS > | |
void | backward_one_eps_closure (Element< A, AI > &a, const EPS &eps) |
In place backward_one_eps_closure of an automaton. | |
template<typename A , typename AI , typename EPS > | |
void | forward_one_eps_closure (Element< A, AI > &a, const EPS &eps) |
In place forward one_eps_closure of an automaton. | |
template<typename A , typename AI > | |
void | prefix_here (const Element< A, AI > &a) |
Make every states of the automaton final states (in place). | |
template<typename A , typename AI > | |
Element< A, AI > | prefix (const Element< A, AI > &a) |
Make every states of the automaton final states. | |
template<typename auto_t , typename trans_t > | |
void | set_states (const trans_t &, auto_t &, std::map< typename trans_t::hstate_t, typename auto_t::hstate_t > &) |
template<typename A , typename AI > | |
void | realtime_here (Element< A, AI > &a, misc::direction_type dir) |
Modify an automaton in place to make it realtime. | |
template<typename A , typename AI > | |
Element< A, AI > | realtime (const Element< A, AI > &a, misc::direction_type dir) |
Create a realtime automaton from another one. | |
template<typename S , typename T > | |
Element< S, T > | realtime (const Element< S, T > &e) |
Compute the realtime version of a rational expression or an automata. | |
template<typename S , typename T > | |
void | realtime_here (Element< S, T > &e) |
Modify a rational expression or automata in place to make it realtime. | |
template<typename S , typename T > | |
bool | is_realtime (const Element< S, T > &e) |
Test whether an automaton or a rational expression is realtime. | |
template<typename S , typename T > | |
void | rw_composition (const Element< S, T > &lhs, const Element< S, T > &rhs, Element< S, T > &ret) |
Composition for Rational-Weight transducers. | |
template<typename S , typename T > | |
Element< S, T > | rw_composition (const Element< S, T > &lhs, const Element< S, T > &rhs) |
Composition for Rational-Weight transducers. | |
template<typename InputIterator , typename FoundFunctor , typename Series , typename Kind , typename T > | |
void | search (const Element< Automata< Series, Kind >, T > &a, const InputIterator &begin, const InputIterator &end, typename Element< Automata< Series, Kind >, T >::letter_t eol, FoundFunctor &f) |
Search for a rational expression into a text. | |
template<typename Series , typename Kind , typename T , typename StatesSet > | |
static unsigned int | compute_distances (const Element< Automata< Series, Kind >, T > &a, std::vector< StatesSet > &distances) |
Compute distances from initial states to final states. | |
template<typename InputIterator , typename Series , typename Kind , typename T , typename StatesSet > | |
static std::pair< bool, unsigned int > | window_backsearch (const misc::Window< InputIterator, typename Element< Automata< Series, Kind >, T >::letter_t > &w, const Element< Automata< Series, Kind >, T > &a, const std::vector< StatesSet > &distances) |
Back search inside a window. | |
template<typename InputIterator , typename FoundFunctor , typename Series , typename Kind , typename T > | |
static InputIterator | confirm_and_report_match (const misc::Window< InputIterator, typename Element< Automata< Series, Kind >, T >::letter_t > &w, const Element< Automata< Series, Kind >, T > &a, FoundFunctor &f) |
Finds the longest match of a starting from w, and report it to the functor. | |
template<typename Automaton > | |
Automaton::monoid_elt_t | shortest (const Automaton &autom) |
Return the smallest accepted word. | |
template<typename Automaton , typename MonoidElt > | |
bool | shortest (const Automaton &autom, MonoidElt &word) |
Compute the smallest accepted word. | |
template<typename Automaton , typename MonoidElt , typename Alloc > | |
void | enumerate (const Automaton &autom, unsigned max_length, std::list< MonoidElt, Alloc > &word_list) |
Compute the list of short accepted words. | |
template<typename A , typename AI1 , typename AI2 > | |
void | union_here (Element< A, AI1 > &lhs, const Element< A, AI2 > &rhs) |
In place union of two automata. | |
template<typename A , typename AI1 , typename AI2 > | |
Element< A, AI1 > | union_ (const Element< A, AI1 > &lhs, const Element< A, AI2 > &rhs) |
Union of two automata. | |
template<typename A , typename AI > | |
bool | is_standard (const Element< A, AI > &a) |
Returns true iff the input automaton is standard. | |
template<typename A , typename AI > | |
void | standardize (Element< A, AI > &a) |
Returns a standard automaton associated to the input. | |
template<typename A , typename AI1 , typename AI2 > | |
void | sum_of_standard_here (Element< A, AI1 > &lhs, const Element< A, AI2 > &rhs) |
In-place sum of two standard automata. | |
template<typename A , typename AI1 , typename AI2 > | |
Element< A, AI1 > | sum_of_standard (const Element< A, AI1 > &lhs, const Element< A, AI2 > &rhs) |
Return a fresh sum of two standard automata. | |
template<typename A , typename AI1 , typename AI2 > | |
void | concat_of_standard_here (Element< A, AI1 > &lhs, const Element< A, AI2 > &rhs) |
In-place concatenation of two standard automata. | |
template<typename A , typename AI1 , typename AI2 > | |
Element< A, AI1 > | concat_of_standard (const Element< A, AI1 > &lhs, const Element< A, AI2 > &rhs) |
Return a fresh concatenation of two standard automata. | |
template<typename A , typename AI > | |
void | star_of_standard_here (Element< A, AI > &a) |
In-place star transformation of a standard automaton. | |
template<typename A , typename AI > | |
Element< A, AI > | star_of_standard (const Element< A, AI > &a) |
Return the fresh star transformation of a standard automata. | |
template<typename A , typename AI > | |
void | left_mult_of_standard_here (Element< A, AI > &aut, const typename Element< A, AI >::series_set_elt_t &k) |
In-place left exterior multiplication by a weight. | |
template<typename A , typename AI > | |
void | right_mult_of_standard_here (Element< A, AI > &aut, const typename Element< A, AI >::series_set_elt_t &k) |
In-place right exterior multiplication by a weight. | |
template<typename A , typename T , typename Exp > | |
void | standard_of (Element< A, T > &a, const Exp &e) |
Convert a rational expression into a standard automaton. | |
template<typename A , typename AI , typename HStatesSet > | |
Element< A, AI > | sub_automaton (const Element< A, AI > &a, const HStatesSet &s, bool check_states=true) |
Returns a fresh automaton that is the sub-automaton defined by a set. | |
template<typename A , typename AI , typename HStatesSet > | |
void | sub_automaton_here (Element< A, AI > &a, const HStatesSet &s, bool check_states=true) |
Select a sub-automaton into a given automaton. | |
template<class S , class T > | |
Element< S, T > | sub_normalize (const Element< S, T > &a) |
Sub-normalize a FMP transducer. | |
template<class S , class T1 , class T2 > | |
void | sub_normalize (const Element< S, T1 > &a, Element< S, T2 > &res) |
Sub-normalize a FMP transducer. | |
template<class S , class T > | |
void | sub_normalize_here (Element< S, T > &a) |
Sub-normalize a FMP transducer, in place version. | |
template<class S , class T > | |
bool | is_sub_normalized (const Element< S, T > &a) |
Check if a FMP transducer is sub-normalized. | |
template<typename A , typename AI > | |
void | suffix_here (const Element< A, AI > &a) |
Make every states of the automaton initial states (in place). | |
template<typename A , typename AI > | |
Element< A, AI > | suffix (const Element< A, AI > &a) |
Make every states of the automaton initial states. | |
template<typename A , typename T , typename Letter , typename Weight > | |
void | thompson_of (Element< A, T > &out, const rat::exp< Letter, Weight > &kexp) |
The Thompson automaton associated to the krat expression. | |
template<typename AutoType , typename S , typename K , class T > | |
Element< Automata< S, K > , AutoType > | thompson_of (const Element< S, T > &exp) |
The Thompson automaton associated to the krat expression. | |
template<typename A , typename AI1 , typename AI2 > | |
void | transpose (Element< A, AI1 > &dst, const Element< A, AI2 > &src) |
Transposition of an automaton. | |
template<typename A , typename AI > | |
Element< A, AI > | transpose (const Element< A, AI > &src) |
Return a fresh transposed automaton. | |
template<typename A , typename AI > | |
std::set< typename Element< A, AI >::hstate_t > | useful_states (const Element< A, AI > &a) |
Returns a useful states of the automaton. | |
template<typename A , typename AI > | |
Element< A, AI > | trim (const Element< A, AI > &a) |
Return a fresh automaton in which non useful states are removed. | |
template<typename A , typename AI > | |
void | trim_here (Element< A, AI > &a) |
Trim a. | |
Determinization algorithms | |
template<typename A , typename AI > | |
Element< A, AI > | determinize (const Element< A, AI > &a) |
Build a deterministic automaton from a Boolean automaton. | |
template<typename A , typename AI > | |
Element< A, AI > | determinize (const Element< A, AI > &a, std::map< typename Element< A, AI >::hstate_t, std::set< typename Element< A, AI >::hstate_t > > &m) |
Build a deterministic automaton from a Boolean automaton, keeping trace of state-to-states correspondences. | |
FMP automaton to rational weight transducer algorithm. | |
Compute the equivalent Rational Weight transducer of a FMP automaton. Please note that for the moment this function works only if the support of each transition is finite. Algorithm : If the FMP contains transitions with "complex" expression (E), i.e. infinite support, then Thompson of E. With the resulting automaton apply a conversion. i.e. (a,x) -> a|x | |
template<typename S , typename T , typename SS , typename TT > | |
Element< SS, TT > & | fmp_to_rw (const Element< S, T > &fmp, Element< SS, TT > &res) |
Infiltration algorithm | |
Returns a fresh automaton that is the infiltration of the two input ones.
| |
template<typename A , typename T , typename U > | |
Element< A, T > | infiltration (const Element< A, T > &lhs, const Element< A, U > &rhs, const bool use_geometry=false) |
template<typename A , typename T , typename U > | |
Element< A, T > | infiltration (const Element< A, T > &lhs, const Element< A, U > &rhs, std::map< typename T::hstate_t, std::pair< typename T::hstate_t, typename U::hstate_t > > &, const bool use_geometry=false) |
Letter-to-letter FMP automaton to pair letter automaton algorithm. | |
Compute the pair letter automaton associated to an ltl FMP automaton. | |
template<typename S , typename T > | |
void | ltl_to_pair (const Element< S, T > <l, typename mute_ltl_to_pair< S, T >::ret &res) |
template<typename S , typename T > | |
mute_ltl_to_pair< S, T >::ret | ltl_to_pair (const Element< S, T > <l) |
Pair letter automaton to FMP transducer algorithm. | |
Compute the FMP transducer associated to a pair letter automaton. | |
template<typename S , typename T > | |
void | pair_to_fmp (const Element< S, T > &aut, typename mute_pair_to_fmp< S, T >::ret &res) |
template<typename S , typename T > | |
mute_pair_to_fmp< S, T >::ret | pair_to_fmp (const Element< S, T > &aut) |
Product algorithm | |
Returns a fresh automaton that is the product of the two input ones.
| |
template<typename A , typename T , typename U > | |
Element< A, T > | product (const Element< A, T > &lhs, const Element< A, U > &rhs, const bool use_geometry=false) |
template<typename A , typename T , typename U > | |
Element< A, T > | product (const Element< A, T > &lhs, const Element< A, U > &rhs, std::map< typename T::hstate_t, std::pair< typename T::hstate_t, typename U::hstate_t > > &, const bool use_geometry=false) |
Rational Weight transducer to FMP automaton conversion | |
template<typename S , typename T , typename SS , typename TT > | |
Element< SS, TT > & | rw_to_fmp (const Element< S, T > &trans, Element< SS, TT > &res) |
Compute the equivalent FMP automaton of a Rational Weight transducer. | |
Shuffle algorithm | |
Returns a fresh automaton that is the shuffle of the two input ones.
| |
template<typename A , typename T , typename U > | |
Element< A, T > | shuffle (const Element< A, T > &lhs, const Element< A, U > &rhs, const bool use_geometry=false) |
template<typename A , typename T , typename U > | |
Element< A, T > | shuffle (const Element< A, T > &lhs, const Element< A, U > &rhs, std::map< typename T::hstate_t, std::pair< typename T::hstate_t, typename U::hstate_t > > &, const bool use_geometry=false) |
Universal algorithm | |
template<typename A , typename AI > | |
Element< A, AI > | universal (const Element< A, AI > &a) |
Build a universal automaton from a Boolean automaton. |
std::set< typename Element< A, AI >::hstate_t > accessible_states | ( | const Element< A, AI > & | a | ) |
Return accessible states.
This functions returns the accessible states set of its input automaton.
a | The input automaton. |
Definition at line 83 of file accessible.hxx.
References Element< S, T >::structure().
Referenced by vcsn::accessible(), vcsn::accessible_here(), and vcsn::is_trim().
Element< A, AI > accessible | ( | const Element< A, AI > & | a | ) |
Extract the sub-automaton composed of accessible states.
This function returns a fresh sub-automaton of its input containing only accessible states.
a | The input automaton. |
Definition at line 98 of file accessible.hxx.
References vcsn::accessible_states(), and vcsn::sub_automaton().
void accessible_here | ( | Element< A, AI > & | a | ) |
In-place extract the sub-automaton of accessible states.
This function computes the sub-autmaton of accessible states from its input automaton. The operation is performed in-place.
a | An in/out parameter which contains the automaton to work on as input and the result as output. |
Definition at line 91 of file accessible.hxx.
References vcsn::accessible_states(), and vcsn::sub_automaton_here().
std::set< typename Element< A, AI >::hstate_t > coaccessible_states | ( | const Element< A, AI > & | a | ) |
Return co-accessible states.
This functions returns the co-accessible states set of its input automaton, i.e. states which are accessible from final states.
a | The input automaton. |
Definition at line 117 of file accessible.hxx.
References Element< S, T >::structure().
Referenced by vcsn::coaccessible(), vcsn::coaccessible_here(), and vcsn::is_trim().
Element< A, AI > coaccessible | ( | const Element< A, AI > & | a | ) |
Extract the sub-automaton composed of co-accessible states.
This function returns a fresh sub-automaton of its input containing only co-accessible states, i.e. states which are accessible from final states.
a | The input automaton. |
Definition at line 124 of file accessible.hxx.
References vcsn::coaccessible_states(), and vcsn::sub_automaton().
void coaccessible_here | ( | Element< A, AI > & | a | ) |
In-place extract the sub-automaton of co-accessible states.
This function computes the sub-autmaton of co-accessible states from its input automaton. The operation is performed in-place.
a | An in/out parameter which contains the automaton to work on as input and the result as output. |
Definition at line 131 of file accessible.hxx.
References vcsn::coaccessible_states(), and vcsn::sub_automaton_here().
Element< S, SI > canonical | ( | const Element< S, SI > & | exp | ) |
Transform a krat expression into a canonical form using only ACI-rules.
We call ACI-rules the following equivalences:
(E+F)+G = E+(F+G)
E+F = F+E
E+E = E
This algorithm will take a krat expression, and rebuild it from the ground up. Each time a sum (or a sum of sums) is found, its operands are ordered in a way that is unique and duplicate operands are removed.
Note that two krat expressions can be equivalent even though their canonical forms are different. For instance E.E*
and E*.E
are equivalent, but they will not be rewritten by this algorithm since they do not contain any sum.
This algorithm will run in , where is the number of nodes of the input expression.
exp | The input krat expression. |
Definition at line 181 of file aci_canonical.hxx.
References Element< S, T >::structure().
Referenced by BrzozowskiAlgo< T_auto, Exp >::on_state().
Element< A, AI >::series_set_elt_t aut_to_exp | ( | const Element< A, AI > & | a | ) |
Returns a series which describes the language of the automaton.
This algorithm works on every kind of series. However, if, during the computation, it must take the star of it, it can fail. By passing a "generalized" automaton, that is an automaton with rational expression as label, you will be sure to have the algorithm succeed since we can always take the star of a rational expression.
a | The automaton to convert. |
Definition at line 368 of file aut_to_exp.hxx.
Element< A, AI >::series_set_elt_t aut_to_exp | ( | const Element< A, AI > & | a, |
const Chooser & | c | ||
) |
Returns a series which describes the language of the automaton.
This algorithm works on every kind of series. However, if, during the computation, it must take the star of it, it can fail. By passing a "generalized" automaton, that is an automaton with rational expression as label, you will be sure to have the algorithm succeed since we can always take the star of a rational expression.
a | The automaton to work on. |
c | An object-function that returns the next state to remove from the current state and the automaton. |
Definition at line 359 of file aut_to_exp.hxx.
References Element< S, T >::structure().
void complement_here | ( | Element< A, AI > & | a | ) |
Complement in place the set of final states.
a | The deterministic Boolean automaton to complement. |
Definition at line 38 of file complement.hxx.
References vcsn::is_complete(), and vcsn::is_deterministic().
Referenced by vcsn::complement().
Element< A, AI > complement | ( | const Element< A, AI > & | a | ) |
Complement the set of final states.
a | the deterministic Boolean automaton to complement. |
Definition at line 59 of file complement.hxx.
References vcsn::complement_here().
void complete_here | ( | Element< A, AI > & | a | ) |
Make the transition function of an automaton total w.r.t.
the alphabet.
See is_complete() for the definition of a complete automaton.
a | the automaton to complete. |
Definition at line 40 of file complete.hxx.
References vcsn::is_realtime(), Element< S, T >::structure(), and Element< S, T >::value().
Referenced by vcsn::complete().
Element< A, AI > complete | ( | const Element< A, AI > & | a | ) |
Make the transition function of an automaton total w.r.t.
the alphabet.
See is_complete() for the definition of a complete automaton.
a | the automaton to complete. |
Definition at line 94 of file complete.hxx.
References vcsn::complete_here().
bool is_complete | ( | const Element< A, AI > & | a | ) |
Test whether an automaton is complete.
An automaton over a free-monoid is complete if each letter of the alphabet can be read from any of its state (i.e., for each state s
and each letter l
, there is at least one outgoing transition labeled by s
), and if there is at least one initial state.
a | automaton to test. |
Definition at line 107 of file complete.hxx.
References vcsn::is_realtime(), Element< S, T >::structure(), and Element< S, T >::value().
Referenced by vcsn::co_minimization_moore(), vcsn::co_minimization_moore_here(), vcsn::complement_here(), vcsn::minimization_hopcroft(), vcsn::minimization_moore(), and vcsn::minimization_moore_here().
Element< S, T > composition_cover | ( | const Element< S, T > & | fmp | ) |
Facade for composition cover.
Definition at line 70 of file composition_cover.hxx.
References Element< S, T >::structure().
void derived_term_automaton | ( | Element< A, T > & | a, |
const Exp & | e | ||
) |
Convert a krat expression into an automaton using derivatives.
This algorithm produces an automaton from an expression using the Brzozowski construction. This construction involves multiple derivations on the initial expression.
a | An automaton to store the results. |
e | The expression to convert. |
Definition at line 164 of file derived_term_automaton.hxx.
Referenced by vcsn::derived_term_automaton().
Element< A, T > derived_term_automaton | ( | const Exp & | e | ) |
Convert a krat expression into an automaton using derivatives.
e | The expression to convert. |
Definition at line 174 of file derived_term_automaton.hxx.
References vcsn::derived_term_automaton().
Element< A, T > broken_derived_term_automaton | ( | const Exp & | e | ) |
Convert a krat expression into an automaton using derivatives.
Derivations are first performed on the starting expression with the following formulae: d(0)={0}, d(1)={1}, d(a)={a} for all a in the alphabet, d(E+F)=d(E) union d(F), d(E.F)=[d(E)].F, d(E*)={E*}
e | The expression to convert. |
Definition at line 215 of file derived_term_automaton.hxx.
Element< A, AI > determinize | ( | const Element< A, AI > & | a | ) |
Build a deterministic automaton from a Boolean automaton.
This function build a complete and deterministic automaton using the so called "subset construction".
a | The Boolean automaton to determinize. |
Definition at line 176 of file determinize.hxx.
Element< A, AI > determinize | ( | const Element< A, AI > & | a, |
std::map< typename Element< A, AI >::hstate_t, std::set< typename Element< A, AI >::hstate_t > > & | m | ||
) |
Build a deterministic automaton from a Boolean automaton, keeping trace of state-to-states correspondences.
This function build a complete and deterministic automaton using the so called "subset construction" but also returns the map associating each state of the new automaton to the corresponding subset of states from the original automaton.
a | The Boolean automaton to determinize. |
m | A map which will be augmented with the correspondance from one state of the resulting automaton to a subset of states of the input automaton. |
Definition at line 165 of file determinize.hxx.
References Element< S, T >::structure().
bool is_proper | ( | const Element< A, AI > & | a | ) |
Test whether an automaton is proper.
This function returns true if the input is proper.
An automaton (of any type) is proper if none of its transitions has the empty word in its support. (Weights do not matter.)
a | The automaton to test. |
Definition at line 77 of file eps_removal.hxx.
References Element< S, T >::structure().
void eps_removal_here | ( | Element< A, AI > & | a, |
misc::direction_type | dir = misc::backward |
||
) |
In place eps_removal of an automaton (default is backward eps_removal).
This algorithm completes in place the given automaton to make it close over epsilon transition.
It is based on the Floyd/McNaughton/Yamada algorithm.
a | The weighted automaton to close. |
dir | The orientation of the eps_removal. |
Definition at line 697 of file eps_removal.hxx.
References SELECT, and Element< S, T >::structure().
Referenced by vcsn::do_compose(), and vcsn::do_u_compose().
Element< A, AI > eps_removal | ( | const Element< A, AI > & | a, |
misc::direction_type | dir = misc::backward |
||
) |
Eps_Removal of an automaton (default is backward eps_removal).
This algorithm completes the given automaton into a copy to make it close over epsilon transition.
It is based on the Floyd/McNaughton/Yamada algorithm.
a | The weighted automaton to close. |
dir | The orientation of the eps_removal. |
Definition at line 709 of file eps_removal.hxx.
References SELECT.
void backward_eps_removal_here | ( | Element< A, AI > & | a | ) |
In place backward eps_removal of an automaton.
This algorithm completes in place the given automaton to make it close over epsilon transition.
It is based on the Floyd/McNaughton/Yamada algorithm.
a | The weighted automaton to close. |
Definition at line 723 of file eps_removal.hxx.
References SELECT, and Element< S, T >::structure().
Element< A, AI > backward_eps_removal | ( | const Element< A, AI > & | a | ) |
Backward eps_removal of an automaton.
This algorithm completes in place the given automaton to make it close over epsilon transition.
It is based on the Floyd/McNaughton/Yamada algorithm.
a | The weighted automaton to close. |
Definition at line 735 of file eps_removal.hxx.
References SELECT.
void forward_eps_removal_here | ( | Element< A, AI > & | a | ) |
In place forward eps_removal of an automaton.
This algorithm completes in place the given automaton to make it close over epsilon transition.
It is based on the Floyd/McNaughton/Yamada algorithm.
a | The weighted automaton to close. |
Definition at line 749 of file eps_removal.hxx.
References SELECT, and Element< S, T >::structure().
Element< A, AI > forward_eps_removal | ( | const Element< A, AI > & | a | ) |
Forward eps_removal of an automaton.
This algorithm completes in place the given automaton to make it close over epsilon transition.
It is based on the Floyd/McNaughton/Yamada algorithm.
a | The weighted automaton to close. |
Definition at line 761 of file eps_removal.hxx.
References SELECT.
void eps_removal_here_sp | ( | Element< A, AI > & | a, |
misc::direction_type | dir = misc::backward |
||
) |
In place eps_removal_sp of an automaton (default is backward eps_removal).
This algorithm completes in place the given automaton to make it close over epsilon transition.
It is based on the shortest-path algorithm.
a | The weighted automaton to close. |
dir | The orientation of the eps_removal. |
Definition at line 358 of file eps_removal_sp.hxx.
References SELECT, and Element< S, T >::structure().
Element< A, AI > eps_removal_sp | ( | const Element< A, AI > & | a, |
misc::direction_type | dir = misc::backward |
||
) |
Eps_Removal of an automaton (default is backward eps_removal).
This algorithm completes the given automaton into a copy to make it close over epsilon transition.
It is based on the shortest-path algorithm.
a | The weighted automaton to close. |
dir | The orientation of the eps_removal. |
Definition at line 370 of file eps_removal_sp.hxx.
References SELECT.
void backward_eps_removal_here_sp | ( | Element< A, AI > & | a | ) |
In place backward eps_removal_sp of an automaton.
This algorithm completes in place the given automaton to make it close over epsilon transition.
It is based on the shortest-path algorithm.
a | The weighted automaton to close. |
Definition at line 384 of file eps_removal_sp.hxx.
References SELECT, and Element< S, T >::structure().
Element< A, AI > backward_eps_removal_sp | ( | const Element< A, AI > & | a | ) |
Backward eps_removal_sp of an automaton.
This algorithm completes in place the given automaton to make it close over epsilon transition.
It is based on the shortest-path algorithm.
a | The weighted automaton to close. |
Definition at line 396 of file eps_removal_sp.hxx.
References SELECT.
void forward_eps_removal_here_sp | ( | Element< A, AI > & | a | ) |
In place forward eps_removal_sp of an automaton.
This algorithm completes in place the given automaton to make it close over epsilon transition.
It is based on the shortest-path algorithm.
a | The weighted automaton to close. |
Definition at line 410 of file eps_removal_sp.hxx.
References SELECT, and Element< S, T >::structure().
Element< A, AI > forward_eps_removal_sp | ( | const Element< A, AI > & | a | ) |
Forward eps_removal_sp of an automaton.
This algorithm completes in place the given automaton to make it close over epsilon transition.
It is based on the shortest-path algorithm.
a | The weighted automaton to close. |
Definition at line 422 of file eps_removal_sp.hxx.
References SELECT.
bool are_equivalent | ( | const Element< S, A > & | a, |
const Element< S, B > & | b | ||
) |
Returns true iff the two boolean automata are equivalents, i.e., if they recognize the same language.
Definition at line 75 of file equivalent.hxx.
References Element< S, T >::structure().
Element< A, AI >::semiring_elt_t eval | ( | const Element< A, AI > & | a, |
const W & | word | ||
) |
Return the image of a word by an automaton.
eval(a, w) returns a series that is the image of the word 'w' in the automaton. This version of computation is the most general one : it works on every types of automaton, deterministic or not. Yet, the automaton must be realtime.
Definition at line 111 of file eval.hxx.
References vcsn::is_empty(), and Element< S, T >::structure().
void evaluation_fmp | ( | const Element< ST, TT > & | trans, |
const typename input_projection_helper< ST, TT >::ret & | aut, | ||
typename output_projection_helper< ST, TT >::ret & | res | ||
) |
Evaluation over normalized and sub-normalized transducers, seen as automata over a free monoid product.
Definition at line 49 of file evaluation_fmp.hxx.
References Element< S, T >::structure().
void evaluation_rw | ( | const Element< SA, TA > & | a, |
const Element< ST, TT > & | t, | ||
Element< SRET, TRET > & | ret | ||
) |
Evaluate for a "letterized" automaton and a realtime transducer.
a | lhs |
t | rhs |
ret | the result of the evaluation |
Definition at line 45 of file evaluation_rw.hxx.
References Element< S, T >::structure().
identity_transducer_helper< S, K, T >::ret extension | ( | const Element< S, T > & | a | ) |
Extend an automaton to a transducer.
Extend an automaton to a transducer whose multiplicity is the series of the automaton.
Definition at line 111 of file extension.hxx.
References Element< S, T >::structure().
Element< ST, TT > extension | ( | const Element< SA, TA > & | a, |
const Element< ST, TT > & | t | ||
) |
Extend an automaton to a transducer.
Extend an automaton to a transducer whose set is the one of another transducer passed in the second argument. This extension is required if we want to make a product of an automaton with a transducer. If this is not the case, we need simply call extension(automaton_t) above.
Definition at line 205 of file extension.hxx.
References Element< S, T >::structure().
void vcsn::factor_here | ( | const Element< A, AI > & | a | ) |
Make every states of the automaton initial and final states (in place).
a | The realtime automaton to work on. |
Referenced by vcsn::factor().
Element< A, AI > factor | ( | const Element< A, AI > & | a | ) |
Make every states of the automaton initial and final states.
a | The realtime automaton to work on. |
Definition at line 57 of file factor.hxx.
References vcsn::factor_here().
void finite_support_convert | ( | Element< S, T > & | dst, |
const Element< Ss, Ts > & | org | ||
) |
Finite support conversion.
This algorithm copies the value of a finite support application to another, possibly changing its type.
org | The source application to convert. |
dst | The destination application. |
Definition at line 31 of file finite_support_conversion.hxx.
References Element< S, T >::structure().
void vcsn::partial_elimination | ( | const Element< SA, TA > & | a, |
M & | state_exp_pair | ||
) |
This function computes a set of expression, after having eliminated all states which are not initial or final.
a | input automaton |
state_exp_pair | the output mapping |
state_exp_pair | a mapping from the final to the expression of the label connecting it to the initial state. |
void partial_evaluation | ( | const Element< S1, T1 > & | E, |
const Element< S2, T2 > & | S, | ||
const typename Element< S2, T2 >::hstate_t & | p, | ||
M & | res | ||
) |
Partial evaluation of a K RatExp E over a realtime transducer S, starting from a given state p.
The result is a set of states accessible by reading a word in E from p and for each state q, the corresponding image of all the paths from p to q labeled by words from E.
S must be realtime. Note though, that we do not add a precondition as this function is internal, and may be called a lot of time.
E | lhs |
S | rhs |
p | the state from which the evaluation is run |
res | the output map |
Definition at line 181 of file evaluation.hxx.
References Element< S, T >::structure().
bool is_ambiguous | ( | const Element< A, AI > & | aut | ) |
Test the ambiguity of automaton.
A
is ambiguous if there exists a word f
which is the label of two distinct accepting paths A
.aut | The automaton to test. |
Definition at line 58 of file is_ambiguous.hxx.
bool is_deterministic | ( | const Element< A, AI > & | a | ) |
Test if an automaton is deterministic.
A realtime boolean automaton is deterministic if for each state s
and each letter l
, there is at most one outgoing transition labeled by s
, and if there is at most one initial state.
a | the automaton to check. |
Definition at line 98 of file is_deterministic.hxx.
Referenced by vcsn::co_minimization_moore(), vcsn::co_minimization_moore_here(), vcsn::complement_here(), vcsn::minimization_hopcroft(), vcsn::minimization_moore(), and vcsn::minimization_moore_here().
bool is_empty | ( | const Element< A, AI > & | a | ) |
Evaluate if an automaton is empty.
Return true if the automaton is empty (has no state), false otherwise.
a | The input automaton. |
Definition at line 30 of file is_empty.hxx.
Referenced by vcsn::eval().
bool is_ltl | ( | const Element< S, A > & | t | ) |
Test whether an FMP transducer is letter-to-letter.
t | The FMP transducer to test. |
Definition at line 87 of file is_ltl.hxx.
References Element< S, T >::structure().
bool is_normalized_transducer | ( | const Element< S, A > & | t | ) |
Test the normalization of transducer.
t | The transducer to test. |
Definition at line 50 of file is_normalized.hxx.
References Element< S, T >::structure().
bool is_trim | ( | const Element< A, AI > & | a | ) |
Return true is all states are reachable and co-reachable.
This function return true if all states are reachable and co-reachable
a | The input automaton. |
Definition at line 33 of file is_trim.hxx.
References vcsn::accessible_states(), and vcsn::coaccessible_states().
bool is_useless | ( | const Element< A, AI > & | a | ) |
Return true if the automaton has no successful computation.
Return false if the automaton has a successful computation, true otherwise.
An automaton has a successful computation if it has at least one state that is both accessible and co-accessible.
a | The input automaton. |
Definition at line 31 of file is_useless.hxx.
References vcsn::trim().
std::list< typename Series::monoid_t::alphabet_t::letter_t > flatten | ( | const Element< Series, T > & | exp | ) |
This algorithm extracts the letters from a rational expression.
The flatten() function extracts the letters of a rational expression, keeping the order in which they appear in the expression. The result is just a std::list of letters, with letters having the same type as the expression's letter, i.e. Element<S, T>::monoid_elt_t::set_t::alphabet_t::letter_t.
exp | The expression to work on. |
Definition at line 123 of file krat_exp_flatten.hxx.
Element< A, AI > minimization_hopcroft | ( | const Element< A, AI > & | a | ) |
Return the minimal automaton using the hopcroft algorithm.
Minimize a with Hopcroft algorithm.
a | The deterministic Boolean automaton to minimize. |
a | The automaton. |
Definition at line 297 of file minimization_hopcroft.hxx.
References vcsn::is_complete(), vcsn::is_deterministic(), and Element< S, T >::structure().
Element< A, AI > quotient | ( | const Element< A, AI > & | a | ) |
Return the quotient of a non-deterministic acceptor.
This algorithms works with both Boolean and weighted automata.
a | The automaton to minimize. |
Definition at line 895 of file minimization_hopcroft.hxx.
References vcsn::is_realtime(), and SELECT.
Element< A, AI > minimization_moore | ( | const Element< A, AI > & | a | ) |
Returns the minimal deterministic automaton associated to the input one.
Use Moore's algorithm to compute the minimal equivalent deterministic automaton. The complexity of this algorithm is O(n2). See minimize_hopcroft for O(nlogn).
Definition at line 269 of file minimization_moore.hxx.
References vcsn::is_complete(), vcsn::is_deterministic(), and Element< S, T >::structure().
Element< A, AI > co_minimization_moore | ( | const Element< A, AI > & | a | ) |
Returns the co-minimal co-deterministic automaton associated to the input one.
Use Moore's algorithm to compute the minimal equivalent co-deterministic automaton. The complexity of this algorithm is O(n2).
Definition at line 292 of file minimization_moore.hxx.
References vcsn::is_complete(), vcsn::is_deterministic(), Element< S, T >::structure(), and vcsn::transpose().
void minimization_moore_here | ( | Element< A, AI > & | a | ) |
Minimalize the deterministic input automaton.
Use Moore's algorithm to minimalize (in place) the input automaton. The complexity of this algorithm is O(n2). See minimize_hopcroft for O(nlogn).
Definition at line 257 of file minimization_moore.hxx.
References vcsn::is_complete(), vcsn::is_deterministic(), and Element< S, T >::structure().
void co_minimization_moore_here | ( | Element< A, AI > & | a | ) |
Co-minimalize the co-deterministic input automaton.
Use Moore's algorithm to co-minimalize (in place) the input automaton. The complexity of this algorithm is O(n2). See minimize_hopcroft for O(nlogn).
Definition at line 280 of file minimization_moore.hxx.
References vcsn::is_complete(), vcsn::is_deterministic(), Element< S, T >::structure(), and vcsn::transpose().
Element< A, AI > normalize | ( | const Element< A, AI > & | a | ) |
Return the fresh thompson-normalized automaton.
This function returns the thompson-normalized automaton corresponding to its input.
a | The automaton to normalize. |
Definition at line 63 of file normalized.hxx.
References Element< S, T >::structure().
void normalize_here | ( | Element< A, AI > & | a | ) |
In-place normalize to the thompson form.
This function performs the in-place thompson-normalization of its input.
a | An in/out parameter containing the automaton to normalize as input, and the normalized automaton as output. |
Definition at line 72 of file normalized.hxx.
References Element< S, T >::structure().
bool is_normalized | ( | const Element< A, AI > & | a | ) |
Return true if the input automaton is thompson-normalized.
This function indicates whether its input automaton is thompson-normalized or not.
a | The automaton to test. |
Definition at line 159 of file normalized.hxx.
References Element< S, T >::structure().
void union_of_normalized_here | ( | Element< A, AI1 > & | lhs, |
const Element< A, AI2 > & | rhs | ||
) |
Do the in-place union of two thompson-normalized automata.
This function performs the in-place union of two thompson-normalized automata. The result is thompson-normalized.
lhs | An in/out parameter which is the left hand side of the union as input, and the operation result as output. |
rhs | Right hand side of the union. |
Definition at line 113 of file normalized.hxx.
Element< A, AI1 > union_of_normalized | ( | const Element< A, AI1 > & | lhs, |
const Element< A, AI2 > & | rhs | ||
) |
Return the fresh union of two thompson-normalized automata.
This function returns a fresh automaton which is the union of input automata. It is thompson-normalized.
lhs | Left hand side of the union. |
rhs | Right hand side of the union. |
Definition at line 121 of file normalized.hxx.
References Element< S, T >::structure().
void concatenate_of_normalized_here | ( | Element< A, AI1 > & | lhs, |
const Element< A, AI2 > & | rhs | ||
) |
Do the in-place concatenation of two thompson-normalized automata.
This function performs the in-place concatenation of two thompson-normalized automata. The result is thompson-normalized.
lhs | An in/out parameter which is the left hand side of the concatenation as input, and the operation result as output. |
rhs | Right hand side of the concatenation. |
Definition at line 240 of file normalized.hxx.
References Element< S, T >::structure().
Element< A, AI1 > concatenate_of_normalized | ( | const Element< A, AI1 > & | lhs, |
const Element< A, AI2 > & | rhs | ||
) |
Return the fresh concatenation of two thompson-normalized automata.
This function returns a fresh automaton which is the concatenation of input automata. It is thompson-normalized.
lhs | Left hand side of the concatenation. |
rhs | Right hand side of the concatenation. |
Definition at line 247 of file normalized.hxx.
References Element< S, T >::structure().
void star_of_normalized_here | ( | Element< A, AI > & | a | ) |
Do in-place star transformation on the thompson-normalized input.
This function performs the in-place star transformation of a thompson-normalized automaton. The result is thompson-normalized.
a | An in/out parameter which is the automaton to transform as input, and the operation result as output. |
Definition at line 283 of file normalized.hxx.
References Element< S, T >::structure().
Element< A, AI > star_of_normalized | ( | const Element< A, AI > & | a | ) |
Return the fresh star transformation of its normalized input.
This function performs a star transformation on its input, and returns it as a fresh automaton. The input must be thompson-normalized, and the result is thompson-normalized.
a | The automaton to run star transformation on. |
Definition at line 290 of file normalized.hxx.
References Element< S, T >::structure().
void compose | ( | const Element< S, T > & | lhs, |
const Element< S, T > & | rhs, | ||
Element< S, T > & | ret | ||
) |
Composition for weighted normalized and sub-normalized transducers, seen as automata over a free monoid product.
lhs | The left hand side transducer. |
rhs | The right hand side transducer. |
ret | The result transducer. |
Definition at line 421 of file normalized_composition.hxx.
References SELECT, and Element< S, T >::structure().
Referenced by vcsn::do_compose(), and vcsn::do_u_compose().
Element< S, T > compose | ( | const Element< S, T > & | lhs, |
const Element< S, T > & | rhs | ||
) |
Composition for weighted normalized and sub-normalized transducers, seen as automata over a free monoid product.
lhs | The left hand side transducer. |
rhs | The right hand side transducer. |
Definition at line 441 of file normalized_composition.hxx.
References SELECT, and Element< S, T >::structure().
void u_compose | ( | const Element< S, T > & | lhs, |
const Element< S, T > & | rhs, | ||
Element< S, T > & | ret | ||
) |
Unambiguous composition for weighted normalized and sub-normalized transducers, seen as automata over a free monoid product.
lhs | The left hand side transducer. |
rhs | The right hand side transducer. |
ret | The result transducer. |
Definition at line 475 of file normalized_composition.hxx.
References vcsn::do_u_compose(), and Element< S, T >::structure().
Element< S, T > u_compose | ( | const Element< S, T > & | lhs, |
const Element< S, T > & | rhs | ||
) |
Unambiguous composition for weighted normalized and sub-normalized transducers, seen as automata over a free monoid product.
lhs | The left hand side transducer. |
rhs | The right hand side transducer. |
Definition at line 492 of file normalized_composition.hxx.
References vcsn::do_u_compose(), and Element< S, T >::structure().
void one_eps_closure | ( | Element< A, AI > & | a, |
const EPS & | eps, | ||
misc::direction_type | dir = misc::backward |
||
) |
In place one_eps_closure of an automaton (default is backward eps_closure).
This algorithm closes the given automaton with respect to the given "epsilon transition". The epsilon transition type can be any type supporting src(), dst(), and weight().
a | The weighted automaton to close. |
eps_set | The epsilon transition that induces the closure. |
dir | The orientation of the eps_closure. |
Definition at line 171 of file one_eps_closure.hxx.
References Element< S, T >::structure().
void backward_one_eps_closure | ( | Element< A, AI > & | a, |
const EPS & | eps | ||
) |
In place backward_one_eps_closure of an automaton.
This algorithm closes the given automaton with respect to each epsilon transition of the given collection. The epsilon transition can be any type supporting src(), dst(), and weight(). The behaviour of the algorithm depends on the ordering of epsilon transitions.
For every transition 't' in 'a' with source eps.dst(), a transition is created in 'a', with source eps.src(), destination t.dst(), and series eps.weight()*t.series()
a | The weighted automaton to close. |
eps | The collection of epsilon transitions that induces the closure. |
dir | The orientation of the eps_closure. |
Definition at line 153 of file one_eps_closure.hxx.
References Element< S, T >::structure().
void forward_one_eps_closure | ( | Element< A, AI > & | a, |
const EPS & | eps | ||
) |
In place forward one_eps_closure of an automaton.
This algorithm closes the given automaton with respect to each epsilon transition of the given collection. The epsilon transition can be any type supporting src(), dst(), and weight(). The behaviour of the algorithm depends on the ordering of epsilon transitions.
For every transition 't' in 'a' wist destination eps.src(), a transition is created in 'a', with source t.src(), destination eps.dst(), and series t.series()*eps.weight().
a | The weighted automaton to close. |
eps | The collection of epsilon transitions that induces the closure. |
dir | The orientation of the eps_closure. |
Definition at line 162 of file one_eps_closure.hxx.
References Element< S, T >::structure().
void vcsn::prefix_here | ( | const Element< A, AI > & | a | ) |
Make every states of the automaton final states (in place).
a | The realtime automaton to work on. |
Referenced by vcsn::prefix().
Element< A, AI > prefix | ( | const Element< A, AI > & | a | ) |
Make every states of the automaton final states.
a | The realtime automaton to work on. |
Definition at line 54 of file prefix.hxx.
References vcsn::prefix_here().
void set_states | ( | const trans_t & | fmp_trans, |
auto_t & | res, | ||
std::map< typename trans_t::hstate_t, typename auto_t::hstate_t > & | stmap | ||
) |
Definition at line 28 of file projection.hxx.
void realtime_here | ( | Element< A, AI > & | a, |
misc::direction_type | dir | ||
) |
Modify an automaton in place to make it realtime.
An automaton over a free monoid is realtime if all its transitions are labeled by single letters of , and all its initial and final arrows are labeled by empty words. (Weights do not matter.)
This algorithm works in two steps: first transitions labeled by words are split into transitions labeled by single letters separated by newly created states (if there is a weight associated to the word, it will be associated to the first letter and the other letter will be associated to the identity of the semiring); second the epsilon transitions are removed.
Removing epsilon transitions can be done in two ways: forward or backward. The dir argument can be used to control the direction, and defaults to forward.
a | The automaton to make realtime. |
dir | The direction of the epsilon removal algorithm. |
Definition at line 224 of file realtime.hxx.
References Element< S, T >::structure().
Element< A, AI > realtime | ( | const Element< A, AI > & | a, |
misc::direction_type | dir | ||
) |
Create a realtime automaton from another one.
As realtime_here
, this algorithm builds a realtime automaton, but it returns a new one instead of changing the given one.
a | The automaton to make realtime. |
dir | The direction of the epsilon removal algorithm. |
Definition at line 247 of file realtime.hxx.
References Element< S, T >::structure().
Element< S, T > realtime | ( | const Element< S, T > & | e | ) |
Compute the realtime version of a rational expression or an automata.
This function is a wrapper which selects the realtime function either from realtime.hh or from krat_exp_realtime.hh.
When called upon an automaton, this function uses the functions declared in realtime.hh to make this automaton realtime using the forward epsilon removal.
When called with a rational expression, a function from krat_exp_realtime.hh is selected to expand words in the expression as a product of a letters.
Definition at line 26 of file realtime_decl.hxx.
References Element< S, T >::structure().
void realtime_here | ( | Element< S, T > & | e | ) |
Modify a rational expression or automata in place to make it realtime.
This function is a wrapper thest selects the realtime() function from either realtime.hh or from krat_exp_realtime.hh.
It behaves exactly as realtime(), but do the operation in place.
Definition at line 33 of file realtime_decl.hxx.
References Element< S, T >::structure().
bool is_realtime | ( | const Element< S, T > & | e | ) |
Test whether an automaton or a rational expression is realtime.
This function returns true if the input is realtime.
An automaton over a free monoid is realtime if all its transitions are labeled by single letters of . (Weights do not matter.)
A rational expression is realtime if its litterals are only single letters of . E.g. "ab.ab*" is not rational while "a.b.(a.b)*" is.
e | The automaton or rational expression to test. |
Definition at line 40 of file realtime_decl.hxx.
References Element< S, T >::structure().
Referenced by vcsn::complete_here(), vcsn::is_complete(), vcsn::quotient(), vcsn::reduce(), vcsn::semi_reduce(), and vcsn::universal().
void rw_composition | ( | const Element< S, T > & | lhs, |
const Element< S, T > & | rhs, | ||
Element< S, T > & | ret | ||
) |
Composition for Rational-Weight transducers.
Definition at line 251 of file rw_composition.hxx.
References Element< S, T >::structure().
Element< S, T > rw_composition | ( | const Element< S, T > & | lhs, |
const Element< S, T > & | rhs | ||
) |
Composition for Rational-Weight transducers.
Definition at line 276 of file rw_composition.hxx.
References Element< S, T >::structure().
Element<SS, TT>& vcsn::rw_to_fmp | ( | const Element< S, T > & | trans, |
vcsn::Element< SS, TT > & | res | ||
) |
Compute the equivalent FMP automaton of a Rational Weight transducer.
Please note that for the moment this function works only if the support of each transition is finite.
void search | ( | const Element< Automata< Series, Kind >, T > & | a, |
const InputIterator & | begin, | ||
const InputIterator & | end, | ||
typename Element< Automata< Series, Kind >, T >::letter_t | eol, | ||
FoundFunctor & | f | ||
) |
Search for a rational expression into a text.
This function searches a rational expression into a text, given a iterator on the text and an automaton which recognizes the corresponding langage. The result cannot spread over two lines.
a | The automaton which recognizes the searched words. |
begin | An input iterator to the begining of the text. |
end | An iterator to the end of the text. |
eol | The character to use for ending a line. |
f | A functor with an operator () method taking 3 InputIterator as argument which will be called each time a match is found. the first one points to the begining of the stream. The two following ones are respectively the first and the last position of the match in the stream. |
Definition at line 31 of file search.hxx.
static unsigned int vcsn::compute_distances | ( | const Element< Automata< Series, Kind >, T > & | a, |
std::vector< StatesSet > & | distances | ||
) | [static] |
Compute distances from initial states to final states.
For each i, compute the set of states reachable in i steps or fewer. the result is stored into a vector of sets of states distances[i]. The algorithm stops when it encounters a final state. The last i value is returned.
Definition at line 66 of file search.hxx.
static std::pair<bool, unsigned int> vcsn::window_backsearch | ( | const misc::Window< InputIterator, typename Element< Automata< Series, Kind >, T >::letter_t > & | w, |
const Element< Automata< Series, Kind >, T > & | a, | ||
const std::vector< StatesSet > & | distances | ||
) | [static] |
Back search inside a window.
Returns whether the window is a potential match for the given automaton or not as the first element of the pair. The second element is the maximal value we can use to shift the window without skipping matches.
w | The window. |
a | The automaton to use. |
distances | Distances get from compute_distances(). |
Definition at line 124 of file search.hxx.
References std::swap().
Automaton::monoid_elt_t shortest | ( | const Automaton & | autom | ) |
Return the smallest accepted word.
This functions returns the smallest accepted word. A breath-first lexicographically algorithm is performed, and to each met state is associated the smallest word that leads to this state. As soon as a final state is reached, the function returns the corresponding word. If the language of the automaton is empty, the return value is meaningless (due to the current implementation, it is the default value i.e. the empty word).
autom | The input automaton. |
Definition at line 168 of file shortest.hxx.
bool shortest | ( | const Automaton & | autom, |
MonoidElt & | word | ||
) |
Compute the smallest accepted word.
This functions returns the smallest accepted word. A breath-first lexicographically algorithm is performed, and to each met state is associated the smallest word that leads to this state. As soon as a final state is reached, the function returns the corresponding word. The function return true except if the language of the automaton is empty.
autom | The input automaton. |
word | The word which stores the smallest accepted word. |
Definition at line 177 of file shortest.hxx.
void enumerate | ( | const Automaton & | autom, |
unsigned | max_length, | ||
std::list< MonoidElt, Alloc > & | word_list | ||
) |
Compute the list of short accepted words.
This functions computes the list of words shorter than max_length. The list is sorted w.r.t. the military (shortlex) order.
At step k, the set of states accessible by words of length k is computed; for each state the list of these words is stored. After step max_length, all the words that make final states are collected, sorted, and potential redundancy is suppressed.
autom | The input automaton. |
max_length | The maximal length for words. |
the | list to fill with accepted words shortest than max_length. |
Definition at line 184 of file shortest.hxx.
void union_here | ( | Element< A, AI1 > & | lhs, |
const Element< A, AI2 > & | rhs | ||
) |
In place union of two automata.
This function adds states and transitions of a second automaton to states and transitions of a first automaton.
lhs | First automaton and destination of the union |
rhs | Second automaton of the union |
Definition at line 104 of file standard.hxx.
References Element< S, T >::structure().
Element< A, AI1 > union_ | ( | const Element< A, AI1 > & | lhs, |
const Element< A, AI2 > & | rhs | ||
) |
Union of two automata.
This function returns the fresh union of two automata. It puts transitions and states of the two automata together, and create a new one with the result.
lhs | First automaton of the union |
rhs | Second automaton of the union |
union_
instead of union
because the latter is a reserved keyword.Definition at line 112 of file standard.hxx.
References Element< S, T >::structure().
bool is_standard | ( | const Element< A, AI > & | a | ) |
Returns true iff the input automaton is standard.
a | The automaton to test |
Definition at line 183 of file standard.hxx.
References Element< S, T >::structure().
Referenced by vcsn::concat_of_standard(), vcsn::concat_of_standard_here(), vcsn::left_mult_of_standard_here(), vcsn::right_mult_of_standard_here(), vcsn::star_of_standard(), vcsn::star_of_standard_here(), vcsn::sum_of_standard(), and vcsn::sum_of_standard_here().
void standardize | ( | Element< A, AI > & | a | ) |
Returns a standard automaton associated to the input.
a | The automaton to standardize |
Definition at line 236 of file standard.hxx.
References Element< S, T >::structure().
void sum_of_standard_here | ( | Element< A, AI1 > & | lhs, |
const Element< A, AI2 > & | rhs | ||
) |
In-place sum of two standard automata.
This function makes the sum of two standard automata. The result is a standard automaton.
lhs | The first automaton (it will contain the result) |
rhs | The second automaton |
Definition at line 290 of file standard.hxx.
References vcsn::is_standard(), and Element< S, T >::structure().
Referenced by vcsn::sum_of_standard().
Element< A, AI1 > sum_of_standard | ( | const Element< A, AI1 > & | lhs, |
const Element< A, AI2 > & | rhs | ||
) |
Return a fresh sum of two standard automata.
As sum_of_standard_here
, this function build the sum of two standard automata, but it builds a new one.
lhs | The first automaton |
rhs | The second automaton |
Definition at line 299 of file standard.hxx.
References vcsn::is_standard(), and vcsn::sum_of_standard_here().
void concat_of_standard_here | ( | Element< A, AI1 > & | lhs, |
const Element< A, AI2 > & | rhs | ||
) |
In-place concatenation of two standard automata.
This function makes the concatenation of two standard automata. The result is a standard automaton.
lhs | The first automaton (it will contain the result) |
rhs | The second automaton |
Definition at line 369 of file standard.hxx.
References vcsn::is_standard().
Element< A, AI1 > concat_of_standard | ( | const Element< A, AI1 > & | lhs, |
const Element< A, AI2 > & | rhs | ||
) |
Return a fresh concatenation of two standard automata.
As concat_of_standard_here
, this function builds the union of two automata, but it builds a new one.
lhs | The first automaton |
rhs | The second automaton |
Definition at line 378 of file standard.hxx.
References vcsn::is_standard(), and Element< S, T >::structure().
void star_of_standard_here | ( | Element< A, AI > & | a | ) |
In-place star transformation of a standard automaton.
This function makes the star transformation of a standard automaton, and replaces those given by the result.
a | The automaton to transform |
Definition at line 546 of file standard.hxx.
References vcsn::is_standard().
Element< A, AI > star_of_standard | ( | const Element< A, AI > & | a | ) |
Return the fresh star transformation of a standard automata.
As star_of_standard_here
, this function applies star on an automaton, but it builds a new automaton.
a | The automaton on which star must be applied. |
Definition at line 554 of file standard.hxx.
References vcsn::is_standard(), and Element< S, T >::structure().
void left_mult_of_standard_here | ( | Element< A, AI > & | aut, |
const typename Element< A, AI >::series_set_elt_t & | k | ||
) |
In-place left exterior multiplication by a weight.
Definition at line 440 of file standard.hxx.
References vcsn::is_standard(), and Element< S, T >::structure().
void right_mult_of_standard_here | ( | Element< A, AI > & | aut, |
const typename Element< A, AI >::series_set_elt_t & | k | ||
) |
In-place right exterior multiplication by a weight.
Definition at line 470 of file standard.hxx.
References vcsn::is_standard().
void standard_of | ( | Element< A, T > & | a, |
const Exp & | e | ||
) |
Convert a rational expression into a standard automaton.
e | The expression to convert. |
a | The automaton to store the result. Note that the result will be stored in "a" even if it is not empty. |
Definition at line 294 of file standard_of.hxx.
References Element< S, T >::structure().
Element< A, AI > sub_automaton | ( | const Element< A, AI > & | a, |
const HStatesSet & | s, | ||
bool | check_states = true |
||
) |
Returns a fresh automaton that is the sub-automaton defined by a set.
a | The automaton into which we have to extract the sub-automaton. |
s | The set of states of the sub-automaton included in the state of 'a'. |
check_states | A flag to enable/disable the inclusion checking. |
Definition at line 59 of file sub_automaton.hxx.
References Element< S, T >::structure().
Referenced by vcsn::accessible(), vcsn::coaccessible(), and vcsn::trim().
void sub_automaton_here | ( | Element< A, AI > & | a, |
const HStatesSet & | s, | ||
bool | check_states = true |
||
) |
Select a sub-automaton into a given automaton.
a | The automaton into which we have to extract the sub-automaton. |
s | The set of states of the sub-automaton included in the state of 'a'. |
check_states | A flag to enable/disable the inclusion checking. |
Definition at line 72 of file sub_automaton.hxx.
References Element< S, T >::structure().
Referenced by vcsn::accessible_here(), vcsn::coaccessible_here(), vcsn::do_u_compose(), and vcsn::trim_here().
Element< S, T > sub_normalize | ( | const Element< S, T > & | a | ) |
Sub-normalize a FMP transducer.
Definition at line 220 of file sub_normalize.hxx.
void vcsn::sub_normalize | ( | const Element< S, T1 > & | a, |
Element< S, T2 > & | res | ||
) |
Sub-normalize a FMP transducer.
void sub_normalize_here | ( | Element< S, T > & | a | ) |
Sub-normalize a FMP transducer, in place version.
a | Input automaton. |
Definition at line 238 of file sub_normalize.hxx.
References Element< S, T >::structure().
bool is_sub_normalized | ( | const Element< S, T > & | a | ) |
Check if a FMP transducer is sub-normalized.
Definition at line 244 of file sub_normalize.hxx.
References Element< S, T >::structure().
void vcsn::suffix_here | ( | const Element< A, AI > & | a | ) |
Make every states of the automaton initial states (in place).
a | The realtime automaton to work on. |
Referenced by vcsn::suffix().
Element< A, AI > suffix | ( | const Element< A, AI > & | a | ) |
Make every states of the automaton initial states.
a | The realtime automaton to work on. |
Definition at line 54 of file suffix.hxx.
References vcsn::suffix_here().
void thompson_of | ( | Element< A, T > & | out, |
const rat::exp< Letter, Weight > & | kexp | ||
) |
The Thompson automaton associated to the krat expression.
This function build the automaton associated to the rational expression implemented by a krat_exp, using Thompson algorithm.
out | The resulting automaton. `out' must be empty. |
kexp | The rational expression |
Definition at line 229 of file thompson.hxx.
References Element< S, T >::structure().
Referenced by vcsn::thompson_of().
Element< Automata< S, K >, AutoType > thompson_of | ( | const Element< S, T > & | exp | ) |
The Thompson automaton associated to the krat expression.
This function build the automaton associated to the rational expression implemented by a krat_exp, using Thompson algorithm. The kind of returned automaton is a default one.
exp | The rational expression |
Definition at line 237 of file thompson.hxx.
References Element< S, T >::structure(), vcsn::thompson_of(), and Element< S, T >::value().
void transpose | ( | Element< A, AI1 > & | dst, |
const Element< A, AI2 > & | src | ||
) |
Transposition of an automaton.
This function copies in dst
the transposition of the automaton src
.
dst | Destination |
src | Automaton to transpose |
Definition at line 29 of file algorithms/transpose.hxx.
References vcsn::transpose_view().
Element< A, AI > transpose | ( | const Element< A, AI > & | src | ) |
Return a fresh transposed automaton.
This function returns the transposition of an automaton.
src | Automaton to transpose. |
Definition at line 43 of file algorithms/transpose.hxx.
References Element< S, T >::structure(), and vcsn::transpose().
std::set< typename Element< A, AI >::hstate_t > useful_states | ( | const Element< A, AI > & | a | ) |
Returns a useful states of the automaton.
This functions returns the states that are reachable and co-reachable.
a | The input automaton. |
Definition at line 56 of file trim.hxx.
References Element< S, T >::structure().
Referenced by vcsn::do_u_compose(), vcsn::trim(), and vcsn::trim_here().
Element< A, AI > trim | ( | const Element< A, AI > & | a | ) |
Return a fresh automaton in which non useful states are removed.
a | The input automaton. |
Definition at line 63 of file trim.hxx.
References vcsn::sub_automaton(), and vcsn::useful_states().
Referenced by vcsn::is_useless().
void trim_here | ( | Element< A, AI > & | a | ) |
Trim a.
Remove non useful states from the automaton.
a | The input automaton. |
Definition at line 70 of file trim.hxx.
References vcsn::sub_automaton_here(), and vcsn::useful_states().
Element< A, AI > universal | ( | const Element< A, AI > & | a | ) |
Build a universal automaton from a Boolean automaton.
This function build the universal automaton of a rational language using the intersection of sets. For a complete definition of the universal automaton, see "The universal automaton", (S.Lombardy and J.Sakarovitch) Logic and Automata, Texts in Logic and Games, 2 (Amsterdam University Press, 2008), 457-504.
a | The Boolean automaton recognizing the language. |
Definition at line 181 of file universal.hxx.
References vcsn::is_realtime(), and Element< S, T >::structure().