Vcsn
2.0
Be Rational
|
Break a rational expression into a polynomial. More...
#include <split.hh>
Public Types | |
using | ratexpset_t = RatExpSet |
using | context_t = context_t_of< ratexpset_t > |
using | labelset_t = labelset_t_of< context_t > |
using | label_t = label_t_of< context_t > |
using | ratexp_t = typename ratexpset_t::value_t |
using | weightset_t = weightset_t_of< ratexpset_t > |
using | weight_t = typename weightset_t::value_t |
using | polynomialset_t = ratexp_polynomialset_t< ratexpset_t > |
using | polynomial_t = typename polynomialset_t::value_t |
using | super_t = typename ratexpset_t::const_visitor |
Public Member Functions | |
split_visitor (const ratexpset_t &rs) | |
polynomial_t | operator() (const ratexp_t &v) |
Break a ratexp into a polynomial. More... | |
polynomial_t | split (const ratexp_t &v) |
Easy recursion. More... | |
VCSN_RAT_VISIT (zero,) | |
VCSN_RAT_VISIT (one,) | |
VCSN_RAT_VISIT (atom, e) | |
VCSN_RAT_VISIT (sum, e) | |
polynomial_t | product (const ratexp_t &l, const ratexp_t &r) |
The split-product of l with r. More... | |
polynomial_t | product (const polynomial_t &l, const ratexp_t &r) |
The split-product of l with r. More... | |
VCSN_RAT_VISIT (prod, e) | |
Handle an n-ary product. More... | |
polynomial_t | conjunction (const ratexp_t &l, const ratexp_t &r) |
The split-product of l with r. More... | |
polynomial_t | conjunction (const polynomial_t &l, const ratexp_t &r) |
The split-product of l with r. More... | |
VCSN_RAT_VISIT (conjunction, e) | |
Handle an n-ary conjunction. More... | |
VCSN_RAT_VISIT (star, e) | |
VCSN_RAT_VISIT (lweight, e) | |
VCSN_RAT_VISIT (rweight, e) | |
Static Public Member Functions | |
static constexpr const char * | me () |
Private Attributes | |
ratexpset_t | rs_ |
weightset_t | ws_ = *rs_.weightset() |
Shorthand to the weightset. More... | |
polynomialset_t | ps_ = make_ratexp_polynomialset(rs_) |
polynomial_t | res_ |
The result. More... | |
Break a rational expression into a polynomial.
This is based on the following paper:
/// @article{angrand.2010.jalc, /// author = {Pierre-Yves Angrand and Sylvain Lombardy and Jacques /// Sakarovitch}, /// journal = {Journal of Automata, Languages and Combinatorics}, /// number = {1/2}, /// pages = {27--51}, /// title = {On the Number of Broken Derived Terms of a Rational /// Expression}, /// volume = 15, /// year = 2010, /// abstract = {Bounds are given on the number of broken derived /// terms (a variant of Antimirov's ``partial /// derivatives'') of a rational expression $E$. It is /// shown that this number is less than or equal to /// $2l(E) + 1$ in the general case, where $l(E)$ is the /// literal length of the expression $E$, and that the /// classical bound $l(E) + 1$ which holds for partial /// derivatives also holds for broken derived terms if E /// is in star normal form.\\In a second part of the /// paper, the influence of the bracketing of an /// expression on the number of its derived terms is /// also discussed.} /// } ///
using vcsn::rat::split_visitor< RatExpSet >::context_t = context_t_of<ratexpset_t> |
using vcsn::rat::split_visitor< RatExpSet >::label_t = label_t_of<context_t> |
using vcsn::rat::split_visitor< RatExpSet >::labelset_t = labelset_t_of<context_t> |
using vcsn::rat::split_visitor< RatExpSet >::polynomial_t = typename polynomialset_t::value_t |
using vcsn::rat::split_visitor< RatExpSet >::polynomialset_t = ratexp_polynomialset_t<ratexpset_t> |
using vcsn::rat::split_visitor< RatExpSet >::ratexp_t = typename ratexpset_t::value_t |
using vcsn::rat::split_visitor< RatExpSet >::ratexpset_t = RatExpSet |
using vcsn::rat::split_visitor< RatExpSet >::super_t = typename ratexpset_t::const_visitor |
using vcsn::rat::split_visitor< RatExpSet >::weight_t = typename weightset_t::value_t |
using vcsn::rat::split_visitor< RatExpSet >::weightset_t = weightset_t_of<ratexpset_t> |
|
inline |
|
inline |
The split-product of l with r.
Returns split(l) x split(r). FIXME: This is inefficient, we split the lhs way too often.
Definition at line 182 of file split.hh.
References vcsn::polynomialset< Context >::add_here(), vcsn::polynomialset< Context >::del_weight(), vcsn::polynomialset< Context >::get_weight(), vcsn::polynomialset< Context >::lmul(), vcsn::rat::split_visitor< RatExpSet >::ps_, vcsn::rat::split_visitor< RatExpSet >::rs_, and vcsn::rat::split_visitor< RatExpSet >::split().
Referenced by vcsn::rat::split_visitor< RatExpSet >::VCSN_RAT_VISIT().
|
inline |
The split-product of l with r.
Returns l x split(r).
Definition at line 204 of file split.hh.
References vcsn::polynomialset< Context >::add_here(), vcsn::polynomialset< Context >::lmul(), and vcsn::rat::split_visitor< RatExpSet >::ps_.
|
inlinestatic |
|
inline |
Break a ratexp into a polynomial.
Definition at line 102 of file split.hh.
References vcsn::rat::split_visitor< RatExpSet >::split().
|
inline |
The split-product of l with r.
Returns split(l) x split(r). FIXME: This is inefficient, we split the lhs way too often.
Definition at line 144 of file split.hh.
References vcsn::polynomialset< Context >::add(), vcsn::polynomialset< Context >::del_weight(), vcsn::polynomialset< Context >::get_weight(), vcsn::polynomialset< Context >::lmul(), vcsn::rat::split_visitor< RatExpSet >::ps_, vcsn::polynomialset< Context >::rmul(), vcsn::rat::split_visitor< RatExpSet >::rs_, and vcsn::rat::split_visitor< RatExpSet >::split().
Referenced by vcsn::rat::split_visitor< RatExpSet >::product(), and vcsn::rat::split_visitor< RatExpSet >::VCSN_RAT_VISIT().
|
inline |
The split-product of l with r.
Returns l x split(r).
Definition at line 161 of file split.hh.
References vcsn::polynomialset< Context >::add_here(), vcsn::polynomialset< Context >::lmul(), vcsn::rat::split_visitor< RatExpSet >::product(), and vcsn::rat::split_visitor< RatExpSet >::ps_.
|
inline |
Easy recursion.
Definition at line 108 of file split.hh.
References vcsn::rat::split_visitor< RatExpSet >::res_.
Referenced by vcsn::rat::split_visitor< RatExpSet >::conjunction(), vcsn::rat::split_visitor< RatExpSet >::operator()(), and vcsn::rat::split_visitor< RatExpSet >::product().
|
inline |
Definition at line 114 of file split.hh.
References vcsn::rat::split_visitor< RatExpSet >::ps_, vcsn::rat::split_visitor< RatExpSet >::res_, and vcsn::polynomialset< Context >::zero().
|
inline |
Definition at line 119 of file split.hh.
References vcsn::rat::split_visitor< RatExpSet >::res_, vcsn::rat::split_visitor< RatExpSet >::rs_, and vcsn::rat::split_visitor< RatExpSet >::ws_.
|
inline |
Definition at line 124 of file split.hh.
References vcsn::rat::split_visitor< RatExpSet >::res_, vcsn::rat::split_visitor< RatExpSet >::rs_, and vcsn::rat::split_visitor< RatExpSet >::ws_.
|
inline |
Definition at line 129 of file split.hh.
References vcsn::polynomialset< Context >::add_here(), vcsn::rat::split_visitor< RatExpSet >::ps_, vcsn::rat::split_visitor< RatExpSet >::res_, and vcsn::polynomialset< Context >::zero().
|
inline |
Handle an n-ary product.
Definition at line 170 of file split.hh.
References vcsn::rat::split_visitor< RatExpSet >::product(), and vcsn::rat::split_visitor< RatExpSet >::res_.
|
inline |
Handle an n-ary conjunction.
Definition at line 213 of file split.hh.
References vcsn::rat::split_visitor< RatExpSet >::conjunction(), and vcsn::rat::split_visitor< RatExpSet >::res_.
|
inline |
Definition at line 226 of file split.hh.
References vcsn::rat::split_visitor< RatExpSet >::res_, and vcsn::rat::split_visitor< RatExpSet >::ws_.
|
inline |
Definition at line 231 of file split.hh.
References vcsn::polynomialset< Context >::lmul(), vcsn::rat::split_visitor< RatExpSet >::ps_, and vcsn::rat::split_visitor< RatExpSet >::res_.
|
inline |
Definition at line 237 of file split.hh.
References vcsn::rat::split_visitor< RatExpSet >::ps_, vcsn::rat::split_visitor< RatExpSet >::res_, and vcsn::polynomialset< Context >::rmul().
|
private |
Definition at line 247 of file split.hh.
Referenced by vcsn::rat::split_visitor< RatExpSet >::conjunction(), vcsn::rat::split_visitor< RatExpSet >::product(), and vcsn::rat::split_visitor< RatExpSet >::VCSN_RAT_VISIT().
|
private |
The result.
Definition at line 249 of file split.hh.
Referenced by vcsn::rat::split_visitor< RatExpSet >::split(), and vcsn::rat::split_visitor< RatExpSet >::VCSN_RAT_VISIT().
|
private |
Definition at line 244 of file split.hh.
Referenced by vcsn::rat::split_visitor< RatExpSet >::conjunction(), vcsn::rat::split_visitor< RatExpSet >::product(), and vcsn::rat::split_visitor< RatExpSet >::VCSN_RAT_VISIT().
|
private |
Shorthand to the weightset.
Definition at line 246 of file split.hh.
Referenced by vcsn::rat::split_visitor< RatExpSet >::VCSN_RAT_VISIT().